
Scrap your boilerplate:
a practical design pattern for generic programming

Ralf Lämmel
Vrije Universiteit, Amsterdam

Simon Peyton-Jones
Microsoft Research, Cambridge

Abstract
We describe a design pattern for writing programs that traverse data
structures built from rich mutually-recursive data types. Such pro-
grams often have a great deal of “boilerplate” code that simply
walks the structure, hiding a small amount of “real” code that con-
stitutes the reason for the traversal.

Our technique allows most of this boilerplate to be written once
and for all (perhaps even mechanically generated), leaving the pro-
grammer free to concentrate on the important part of the algorithm.
These generic programs are much more robust to data structure evo-
lution because they contain many fewer lines of type-specific code.

Our approach is simple to understand, reasonably efficient, and it
handles all the data types found in conventional functional program-
ming languages. It makes essential use of rank-2 polymorphism, an
extension found in some implementations of Haskell. Further it re-
lies on a simple type-safe cast operator.

1 Introduction

Suppose you have to write a function that traverses a rich, recur-
sive data structure representing a company’s organisational struc-
ture, and increases the salary of every person in the structure by
10%. The interesting bit of this algorithm is performing the salary-
increase — but the code for the function is probably dominated by
“boilerplate” code that recurses over the data structure to find the
specified department as spelled out in Section 2. This is not an un-
usual situation. On the contrary, performing queries or transforma-
tions over rich data structures, nowadays often arising from XML
schemata, is becoming increasingly important.

Boilerplate code is tiresome to write, and easy to get wrong. More-
over, it is vulnerable to change. If the schema describing the com-
pany’s organisation changes, then so does every algorithm that re-
curses over that structure. In small programs which walk over one
or two data types, each with half a dozen constructors, this is not
much of a problem. In large programs, with dozens of mutually
recursive data types, some with dozens of constructors, the mainte-

Draft of July 22, 2002. Submitted to POPL 2003.

nance burden can become heavy.

Generic programming techniques aim to eliminate boilerplate code.
There is a large literature, as we discuss in Section 9, but much of it
is rather theoretical, or requires significant language extensions, or
addresses only purely-generic algorithms. In this paper, we present
a simple but powerful design pattern for writing generic algorithms
in the strongly-typed lazy functional language Haskell. Our tech-
nique has the following properties:

� It makes the application program robust in the face of data
type (or schema) evolution. As the data types change, only
two functions have to be modified, and those functions can
easily be mechanically generated because they are not appli-
cation specific.

� It is simple, but also very general. Our scheme supports arbi-
trary data type structure without fuss, including parameterised
types, mutually-recursive types, and nested data types. It also
subsumes other styles of generic programming such as term
rewriting strategies.

� It requires two extensions to the Haskell type system, namely
(a) rank-2 types and (b) a form of type-coercion operator.
However these extensions are relatively modest, and are inde-
pendently useful; they have both been available in two popular
implementations of Haskell, GHC and Hugs, for some time.

Our contribution is one of synthesis: we put together some rela-
tively well-understood ideas (type classes, dynamic typing, one-
layer maps) in an innovative way, to solve a practical problem of
increasing importance. The paper should be of direct interest to
programmers and library designers; and it should also interest lan-
guage designers because it provides further evidence for the useful-
ness of rank-2 polymorphic types.

The code for all the examples is available online at:

http://www.cs.vu.nl/Strafunski/gmap/

The corresponding distribution also comes with generative tool sup-
port to generate all datatype-specific boilerplate code. The distribu-
tion includes benchmarks as well: it is possible to get the run-time
performance of typical generic programs reasonably close to the
hand-coded boilerplate-intensive counterparts (Section 10).

2 The problem

We begin by characterising the problem we are trying to solve. Con-
sider the following data types that describe the organisational struc-
ture of a company. A company is divided into departments. Each
department has a manager, and consists of a collection of sub-units,
where a unit is either a single employee or a department. Both man-

1



agers and ordinary employees are just persons receiving a salary.
That is:

data Company = C [Dept]
data Dept = D Name Manager [SubUnit]
data SubUnit = PU Employee | DU Dept
data Employee = E Person Salary
data Person = P Name Address
data Salary = S Float
type Manager = Employee
type Name = String
type Address = String

Here is a typical small company represented by such a data struc-
ture:

genCom :: Company
genCom = C [D "Research" ralf [PU joost, PU marlow],

D "Strategy" blair []]

ralf, joost, blair :: Employee
ralf = E (P "Ralf" "Amsterdam") (S 8000)
joost = E (P "Joost" "Amsterdam") (S 1000)
marlow = E (P "Marlow" "Cambridge") (S 2000)
blair = E (P "Blair" "London") (S 100000)

The advent of XML has made schemes like this much more
widespread, and many tools exist for translating XML schemata
into data type definitions in various languages; in the case of
Haskell, HaXML includes such a tool [34]. There are often many
data types involved, sometimes with many constructors, and their
structure tends to change over time.

Now suppose we want to increase the salary of everyone in the com-
pany by a specified percentage. That is, we must write the function:

increase :: Float -> Company -> Company

So that (increase 0.1 genCom) will be just like genCom except
that everyone’s salary is increased by 10%. It is perfectly straight-
forward to write this function in Haskell:

increase k (C ds) = C (map (incD k) ds)

incD :: Float -> Dept -> Dept
incD k (D nm mgr us) =
D nm (incE k mgr) (map (incU k) us)

incU :: Float -> SubUnit -> SubUnit
incU k (PU e) = PU (incE k e)
incU k (DU d) = DU (incD k d)

incE :: Float -> Employee -> Employee
incE k (E p s) = E p (incS k s)

incS :: Float -> Salary -> Salary
incS k (S s) = S (s * (1+k))

Looking at this code, it should be apparent what we mean by “boil-
erplate”. Almost all the code consists of a routine traversal of the
tree. The only interesting bit is incS which actually increases a
salary. As the size of the data type increases, the ratio of interesting
code to boilerplate decreases. Worse, all the boilerplate needs to
be reproduced for each new function. For example, a function that
finds the salary of a named individual would require a new swathe
of boilerplate.

3 Our solution

Our goal, then, is to write increase without the accompanying
boilerplate code. To give an idea of what is to come, here is the
code for increase:

increase :: Float -> Company -> Company
increase k = everywhere (mkT (incS k))

And that is it! This code is formed from four distinct ingredients:
� The function incS (given in Section 2) is the “interesting

part” of the algorithm. It performs the arithmetic to increase
a Salary.

� The function mkT makes a type extension of (incS k) (read
mkT as “make a transformation”), so that it can be applied
to any node in the tree, not just Salary nodes. The type-
extended function, mkT (incS k), behaves like incS when
applied to a Salary and like the identity function when ap-
plied to any other type. We discuss type extension in Sec-
tion 3.1.

� The function everywhere is a generic traversal combinator
that applies its argument function to every node in the tree.
In this case, the function is the type-extended incS function,
which will increase the value of a Salary node and leave
all others unchanged. We discuss generic traversal in Sec-
tions 3.2 and 3.3.

� Both mkT and everywhere are overloaded functions, in the
Haskell sense, over the classes Typeable and Term (to be
introduced shortly). For each data type involved (Company,
Dept, Person and so on) the programmer must therefore give
an instance declaration for both of these classes. However
these instances are, as we shall see in Sections 3.2 and 4, ex-
tremely simple — in fact, they are “pure boilerplate” — and
they could easily be generated mechanically. Indeed, our soft-
ware distribution includes a tool to do just that.

The following sections fill in the details of this sketch.

3.1 Type extension

The first step is to extend a function, such as incS, that works over
a single type t, to a function that works over many types, but is the
identity at all types but t. The fundamental building-brick is a type-
safe cast operator the type of which involves a class Typeable of
types that can be subject to a cast:

-- An abstract class
class Typeable

-- A type-safe cast operator
cast :: (Typeable a, Typeable b) => a -> Maybe b

This cast function takes an argument x of type a. It makes a run-
time test that compares the types a and b; if they are the same type,
cast returns Just x; if not, it returns Nothing.1 For example, here
is an interactive GHCi session:

Prelude> (cast ’a’) :: Maybe Char
Just ’a’
Prelude> (cast ’a’) :: Maybe Bool
Nothing
Prelude> (cast True) :: Maybe Bool

1In many languages a “cast” operator performs a representation
change as well as type change. Here, cast is operationally the
identity function; it only makes a type change.

2



Just True

The type signature in the above samples gives cast its result con-
text, so it knows what the result type must be; without that, it can-
not do the type test. Because the type class Typeable constrains
the types involved, cast is not completely polymorphic: both argu-
ment and result types must be instances of the class Typeable.

Type-safe cast can be integrated with functional programming in
various ways, preferably by a language extension. As we discuss it
in detail in Section 4, a corresponding extension turns out to be a
modest one. For the rest of this section we will simply assume that
cast is available, and that every type is an instance of Typeable.

Given cast, we can write mkT, which we met in Section 3:

mkT :: (Typeable a, Typeable b)
=> (b -> b) -> a -> a

mkT f = case cast f of
Just g -> g
Nothing -> id

That is, mkT f x applies f to x if x’s type is the same as f’s argu-
ment type, and otherwise applies the identity function to x. Here
are some examples:

Prelude> (mkT not) True
False
Prelude> (mkT not) ’a’
’a’

“mkT” is short for “make a transformation”, because it constructs a
generic transformation function. We can use mkT to lift incS, thus:

inc :: Typeable a => Float -> a -> a
inc k = mkT (incS k)

So inc is applicable to any type that is an instance of
Typeable. . . but we ultimately aim at a function that applies inc to
all nodes in a tree. Hence, we need the second ingredient, namely
generic traversal.

3.2 One-layer traversal

Our approach to traversal has two steps: for each data type we write
a single function, gmapT, that traverses values of that type; then we
build a variety of recursive traversals from gmapT. In the context of
Haskell, we overload gmapT using a type class, Term:

class Typeable a => Term a where
gmapT :: (forall b. Term b => b -> b) -> a -> a

The intended behaviour is this: gmapT takes a generic transforma-
tion (such as inc k) and applies it to all the immediate children of
the value. It is easiest to understand this idea by example. Here is
the instance declaration for Employee:

instance Term Employee where
gmapT f (E per sal) = E (f per) (f sal)

Here we see clearly that gmapT simply applies f to the immediate
children of E, namely per and sal, and rebuilds a new E node.

There are two things worth mentioning regarding the type of
gmapT and its hosting class Term. Firstly, gmapT has a non-
standard type: its first argument is a polymorphic function, of type
forall b. Term b => b -> b. Why? Because it is applied to
both per and sal in the instance declaration, and those two fields
have different types. Haskell 98 would reject the type of gmapT, but
rank-2 types like these have become quite well-established in the

Haskell community. We elaborate in Section 9.1. Secondly, note
the recursion in the class declaration of Term. The member signa-
ture for gmapT refers to Term via a class constraint. The necessity
and meaning of this self-reference is discussed in Section 7.1.

Obviously, we can provide a simple schematic definition for gmapT
for arbitrary terms C t1 ... tn:

gmapT f (C t1 ... tn) = C (f t1) ... (f tn)

When the node has no children, gmapT has no effect. Hence the
Term instance for Bool looks like this:

instance Term Bool where
gmapT f x = x

The important thing to notice is that gmapT only applies f to the
immediate children of the node. It does not perform any kind of
recursive traversal. Here, for example, is the Term instance for
lists, which follows exactly the same pattern as the instance for
Employee:

instance Term a => Term [a] where
gmapT f [] = []
gmapT f (x:xs) = f x : f xs

Notice the “f xs” — not “gmapT f xs” — in the tail of the list.

3.3 Recursive traversal

Even though gmapT has this one-layer-only behaviour, we can syn-
thesise a variety of recursive traversals from it. Indeed, as we shall
see, it is precisely its one-layer behaviour that makes this variety
easy to capture.

For example, the everywhere combinator applies a transformation
to every node in a tree:

-- Apply a transformation everywhere, bottom-up
everywhere :: Term a

=> (forall b. Term b => b -> b)
-> a -> a

everywhere f x = f (gmapT (everywhere f) x)

We can read this function as follows: first apply everywhere f to
all the children of x, and then apply f to the result. The recursion is
in the definition of everywhere, not in the definition of gmapT.2

The beautiful thing about building a recursive traversal strategy
out of non-recursive gmapT is that we can build many different
strategies using a single definition of gmapT. As we have seen,
everywhere works bottom-up, because f is applied after gmapT
has processed the children. It is equally easy to do top-down:

-- Apply a transformation everywhere, top-down
everywhereTD :: Term a

=> (forall b. Term b => b -> b)
-> a -> a

everywhereTD f x = gmapT (everywhereTD f) (f x)

In the rest of this paper we will see many different recursive strate-
gies, each of which takes a line or two to define.

This extremely elegant way of building a recursive traversal in two
steps — first define a one-layer map, and then tie the recursive
knot separately — is well-known folk-lore in the functional pro-
gramming community, e.g., when dealing with ana- and catamor-

2In “point-free” notation:
everywhere f = f . gmapT (everywhere f)

3



phisms for regular data types such as lists [21]. For lack of better-
established terminology we call it “the non-recursive map trick”,
and review it in Section 9.3.

3.4 Another example

Lest we get too fixated on increase here is another example that
uses the same design pattern. Let us write a function that flattens
out a named department d; that is, it takes all d’s sub-units and
makes them part of d’s parent department.

flatten :: Name -> Company -> Company
flatten d = everywhere (mkT (flatD d))

flatD :: Name -> Dept -> Dept
flatD d (D n m us)
= D n m (concatMap unwrap u)
where

unwrap :: SubUnit -> [SubUnit]
unwrap (DU (D d’ m us)) | d==d’ = PU m : us
unwrap u = [u]

The function flatD does the interesting work on a department: it
looks at each of its sub-units, u, applies unwrap to get a list of units
(usually the singleton list [u]), and concatenates the results.3 When
unwrap sees the target department (d == d’) it returns all its sub-
units. The manager m is not fired, but is turned into a plain work-
ing unit, PU m (presumably subject to drastic subsequent salary de-
crease).

Again, this is all the code for the task. The one-line function
flatten uses exactly the same combinators everywhere and mkT
as before to “lift” flatD into a function that is applied everywhere
in the tree.

Furthermore, if the data types change – for example, a new form
of SubUnit is added – then the per-data-type boilerplate code must
be re-generated, but the code for increase and flatten is un-
changed. Of course, if the number of fields in a Dept or SubUnit
changed, then flatD would have to change too, because flatD
mentions the DU and D constructors explicitly. But that is not unrea-
sonable; if a Dept’s units were split into two lists, say, one for peo-
ple and one for sub-departments, the algorithm really would have
to change.

3.5 Summary

We have now completed an initial description of our new design
pattern. To summarise, an application is built from three chunks of
code:

Programmer-written. A short piece of code for the particular ap-
plication. This typically consists of (a) a code snippet to do the
real work (e.g., incS) and (b) the application of some strategy
combinators that lift that function to the full data type, and
specify the traversal scheme.

Mechanically-generated. For each data type, two instance dec-
larations, one for class Typeable and one for class Term. The
former requires a fixed amount of code per data type (see Sec-
tion 4). The latter requires one line of code per constructor, as
we have seen.

Library. A fixed library of combinators, such as mkT and
everywhere. The programmer can readily extend this library

3concatMap :: (a->[b]) -> [a] -> [b] maps a function
over a list and concatenates the results.

with new forms of traversal.

The instance declarations take a very simple, regular form, and
can readily be generated mechanically. For example, the DrIFT
pre-processor can do the job [37], or derivable type classes (almost)
[11], or Template Haskell [29]. Our software distribution includes
such a pre-processor, based on DrIFT. However, mechanical sup-
port is not absolutely necessary: writing this boilerplate code by
hand is not onerous, because it is a one-off task.

The rest of the paper consists of an elaboration and generalisation of
the ideas we have presented. The examples we have seen so far are
all generic transformations that take a Company and produce a new
Company. It turns out that two other forms of generic algorithms
are important: generic queries (Section 5) and monadic transfor-
mations (Section 6). After introducing these forms, we pause to
reflect and generalise on the ideas (Section 7), before showing that
the three forms of algorithm can all be regarded as a form of fold
operation (Section 8). Before all this, we briefly digress to discuss
the type-safe cast operator.

4 Type-safe cast

Our entire approach is predicated on the availability of a type-safe
cast operator, which in turn is closely related to dynamic typing
and intensional polymorphism. We will discuss such related work
in Section 9.2. For completeness, we describe here a Haskell-
encoding for type-safe cast which can be regarded as a reference
implementation. In fact, it is well known folk-lore in the Haskell
community that much of the functionality of cast can be pro-
grammed in standard Haskell. Strangely, there is no published ref-
erence to this trick, so we review it here.

4.1 The Typeable class

The key idea is to refine the type class Typeable, which was previ-
ously assumed to be abstract, as follows:

class Typeable a where
typeOf :: a -> TypeRep

The overloaded operation typeOf takes a value and returns a run-
time representation of its type. Here is one possible implementation
of the TypeRep type, and some instances:

data TypeRep = TR String [TypeRep]

instance Typeable Int where
typeOf x = TR "Prelude.Int" []

instance Typeable Bool where
typeOf x = TR "Prelude.Bool" []

instance Typeable a => Typeable [a] where
typeOf x = TR "Prelude.List" [typeOf (get x)]

where
get :: [a] -> a
get = undefined

instance (Typeable a, Typeable b)
=> Typeable (a->b) where

typeOf f = TR "Prelude.->" [typeOf (getArg f),
typeOf (getRes f)]

where
getArg :: (a->b) -> a
getArg = undefined

4



getRes :: (a->b) -> b
getRes = undefined

Notice that typeOf never evaluates its argument. In particular, the
call (get x) in the list instance will never be evaluated4; it simply
serves as a proxy, telling the compiler the type at which to instanti-
ate the recursive call of typeOf, namely to the element type of the
list. If Haskell had explicit type arguments, typeOf could dispense
with its value argument, with its calls using type application alone5.

4.2 Defining cast using typeOf

Type-safe cast is easy to implement given typeOf, plus a small
Haskell extension:

cast :: (Typeable a, Typeable b) => a -> Maybe b
cast x = r

where
r = if typeOf x == typeOf (get r)

then Just (unsafeCoerce x)
else Nothing

get :: Maybe a -> a
get x = undefined

Here we check whether the argument x and result r have the same
type representation, and if so coerce the one into the other. Here,
unsafeCoerce is an extension to Haskell, with type

unsafeCoerce :: a -> b

It is easy to implement: operationally it is just the identity function.
It is, of course, just as unsafe as its name implies, and we do not
advocate its wide-spread use. Rather, we regard unsafeCoerce as
an implementation device to implement a safe feature (cast); many
language implementations contain a similar trap-door.

4.3 What a mess?

At this point the reader may be inclined to throw up his hands and
declare that if this paper requires unsafeCoerce, and instance
declarations with magic strings that must be distinct, then it has no
place in a language like Haskell. But note that the above scheme
is meant by us as a reference implementation as opposed to a pro-
gramming technique.

That is, the compiler should provide direct support for the class
Typeable, so that its instance for each data type is automatically
generated by the compiler. The programmer does not instantiate
the class him- or herself. Furthermore, cast should be provided
as a primitive — it may be implemented inside the system library
with some kind of low-level coercion, but that is invisible to (and
inaccessible to) the application programmer. With this degree of
compiler support, the system is indeed type-safe.

So this section does not present a programming technique for the
user. Rather, it shows that compiler support for cast does not
require some mysterious fiddling with runtime data representa-
tions. Instead, somewhat surprisingly, it can be cleanly imple-
mented using Haskell’s type-class framework with some readily-
generated simple instance declarations. Furthermore, albeit as an

4The value undefined has type forall a.a in Haskell.
5GHC supports scoped type variables, so a nicer way to write

the list instance of typeOf is this:
TR "Prelude.List" [typeOf (undefined :: a)]

unsavoury stop-gap measure, it is a real advantage to be able to
prototype the system without requiring any compiler support ex-
cept unsafeCoerce.

One might worry about efficiency, because cast involves compar-
ing TypeRep data structures. That cost, however, is not fundamen-
tal. The TypeRep structures can readily be hash-consed (especially
if there is direct compiler support) so that they can be compared in
constant time. Again, this is the business of the library writer (or
even compiler implementor) not the application programmer.

5 Queries

Thus far we have concentrated on generic transformations of type

forall a. Term a => a -> a

There is a second interesting class of generic programs that we call
generic queries. A generic query has a type of the form

forall a. Term a => a -> R

for some fixed result type R. For example, suppose we wanted to
find the salary bill of the company; we would need a function of
type

salaryBill :: Company -> Float

where Float is the fixed result type R.

5.1 Implementing queries

Our general approach is exactly the same as before: we use type ex-
tension to lift the interesting part of the function into a polymorphic
function; for each data types we give a single overloaded traversal
function; and we build salaryBill from these two pieces. Here is
the code, which looks very similar to that for increase:

salaryBill :: Company -> Float
salaryBill = everything (+) (0 ‘mkQ‘ billS)

billS :: Salary -> Float
billS (S f) = f

The interesting part of salaryBill is the function billS that ap-
plies to a Salary. To lift billS to arbitrary types, we use mkQ, a
cousin of mkT:

mkQ :: (Typeable a, Typeable b)
=> r -> (b -> r) -> a -> r

(r ‘mkQ‘ q) a = case cast a of
Just b -> q b
Nothing -> r

That is, the query (r ‘mkQ‘ q) behaves as follows when applied to
an argument a: if a’s type is the same as q’s argument type, use q to
interrogate a; otherwise return the default value r. To illustrate, here
are some examples of using mkQ in an interactive session (recall that
ord has type Char -> Int):

Prelude> (22 ‘mkQ‘ ord) ’a’
97
Prelude> (22 ‘mkQ‘ ord) ’b’
98
Prelude> (22 ‘mkQ‘ ord) True
22

The next step is to extend the Term class with a function gmapQ that
applies the specified query function and makes a list of the results:

5



class Typeable a => Term a where
gmapT :: (forall b. Term b => b -> b) -> a -> a
gmapQ :: (forall b. Term b => b -> r) -> a -> [r]

The instances of gmapQ are as simple as those for gmapT:

instance Term Employee where
gmapT = ...as before..
gmapQ f (E p s) = [f p, f s]

instance Term a => Term [a] where
gmapT = ...as before..
gmapQ f [] = []
gmapQ f (x:xs) = [f x, f xs]

instance Term Bool where
gmapT x = ...as before...
gmapQ x = []

Just as with gmapT, notice that there is no recursion involved (it is a
one-level operator), and that the function has a rank-2 type.

Now we can use gmapQ to build the everything combinator that
performs the recursive traversal. Like any fold, it needs an operator
k to combine results from different sub-trees:

-- Summarise all nodes in top-down, left-to-right
everything :: Term a

=> (r -> r -> r)
-> (forall a. Term a => a -> r)
-> a -> r

everything k f x
= foldl k (f x) (gmapQ (everything k f) x)

Here we see that everything processes the children of x, giving a
list of results; and then combines those results using the ordinary list
function foldl, with the operator k as the combiner. The (f x) is
the result of applying the query to x itself, and that result is included
in the foldl. And that concludes the definition of salaryBill.

5.2 Other queries

By changing the query function and combining operator we can
easily query for a single value rather than combining values from
all nodes in the tree. For example, here is how to extract a named
department from the company data structure:

find :: Name -> Company -> Maybe Dept
find name = everything orElse

(Nothing ‘mkQ‘ findD name)

findD :: String -> Dept -> Maybe Dept
findD name d@(D name’ _ _)

| name == name’ = Just d
| otherwise = Nothing

orElse :: Maybe a -> Maybe a -> Maybe a
x ‘orElse‘ y = case x of

Just _ -> x
Nothing -> y

The use of foldl in everything means that find will find the
leftmost, shallowest department with the specified name. It is easy
to make variants of everything that would find the right-most,
deepest, or whatever. Laziness plays a role here: once a department
of the specified name has been found, traversal will cease.

6 Monadic transformation

As well as transformations (Section 3) and queries (Section 5) there
is a third useful form of generic algorithm, namely a monadic trans-
formation. For example, suppose we wanted to process a Company
structure discarding the old Salary values, and filling in new ones
by looking up the employee’s name in an external database. That
means there is input/output involved, so the function must have type

lookupSalaries :: Company -> IO Company

This type does not fit the scheme for generic transformations or
queries, so we have to re-run the same development one more time.
First, we need a function mkM to construct basic monadic transfor-
mations:

mkM :: (Typeable a, Typeable b,
Typeable (m a), Typeable (m b),
Monad m)

=> (b -> m b) -> a -> m a
mkM f = case cast f of

Just g -> g
Nothing -> return

The type of mkM looks somewhat scary, but it simply explains all the
type-representation constraints. Then we need to extend once more
the class Term to support monadic traversal:

class Typeable a => Term a where
gmapT :: ...as before...
gmapQ :: ...as before...

gmapM :: Monad m
=> (forall b. Term b => b -> m b)
-> a -> m a

The instances for gmapM are just as simple as before; they use
Haskell’s do notation for monadic composition.

instance Term Employee where
...
gmapM f (E p s) = do p’ <- f p

s’ <- f s
return (E p’ s’)

instance Term a => Term [a] where
...
gmapM f [] = return []
gmapM f (x:xs) = do x’ <- f x

xs’ <- f xs
return (x’:xs’)

Now we can make an everywhereM combinator:

everywhereM :: (Monad m, Term a)
=> (forall b. Term b => b -> m b)
-> a -> m a

everywhereM f x = do x’ <- gmapM (everywhereM f) x
f x’

Finally, we can write lookupSalaries

lookupSalaries = everywhereM (mkM lookupE)

lookupE :: Employee -> IO Employee
lookupE (E p@(P n _) _)
= do { s <- dbLookup n; return (E p s) }

dbLookup :: Name -> IO Salary

6



-- Lookup the person in the external database

The obvious question is this: will each new application require a
new variant of gmap? We discuss that in Section 8. Meanwhile,
we content ourselves with two observations. First, gmapT is just a
special case of gmapM, using the identity monad. Second, one might
wonder whether we need a monadic form of gmapQ, by analogy with
gmapT/gmapM. No, we do not: a monadic query is just a special
case of an ordinary query. To see that, we need only recognise that
Maybe is a monad, so the find operation of Section 5.2 is really
performing a monadic query.

7 Refinements and reflections

Having introduced the basics, we pause to reflect on the ideas a little
and to make some modest generalisations.

7.1 An aside about types

It is worth noticing that the type of everywhere could equivalently
be written thus:

everywhere :: (forall b. Term b => b -> b)
-> (forall a. Term a => a -> a)

by moving the implicit forall a inwards. The nice thing about
writing it this way is that it becomes clear that everywhere is a
generic-transformation transformer. We might even write this:

type GenericT = forall a. Term a => a -> a
everywhere :: GenericT -> GenericT

The same approach gives a more perspicuous type for everything:

type GenericQ r = forall a. Term a => a -> r
everything :: (r -> r -> r)

-> GerericQ r -> GerericQ r

From a type-theoretic point of view, these type signatures are iden-
tical to the original ones, and GHC supports such isomorphisms
directly. In particular, GHC allows a forall in type synonym
declaration (such as GenericT) and allows a forall to the right
of a function arrow (which happens when the type synonym is ex-
panded).

7.2 Richer traversals

Sometimes we need to use a query inside a transformation. For
example, suppose we want to increase the salaries of everyone in a
named department, leaving everyone else’s salary unchanged:

increaseOne :: Name -> Float -> Company -> Company
increaseOne = incrOne

incrOne :: Name -> Float -> GenericT
incrOne d k a

| isDept d a = increase k a
| otherwise = gmapT (incrOne d k) a

isDept :: Name -> GenericQ Bool
isDept a = False ‘mkQ‘ isDeptD a

isDeptD :: Name -> Dept -> Bool
isDeptD n (D n’ _ _) = n==n’

The main function here is the generic transformation incrOne;
(The function increaseOne is simply an instantiation of incrOne
at the Company type, with a conveniently documented type.)

incrOne first tests its argument to see whether it is the targeted de-
partment but, because incrOne is a generic transformation, it must
use a generic query, isDept to make the test. The latter is built just
as before using mkQ. Returning to incrOne, if the test returns True,
we call increase (from Section 3) on the department6; otherwise
we apply incrOne recursively to the children.

In this case we did not use one of our traversal combinators
(everything, everywhere, etc) to do the job; it turned out to be
more convenient to write the recursion explicitly. This is yet another
example of the benefit of keeping the recursion out of the definition
of the gmap functions.

7.3 Identifying the interesting cases

Our generic programming technique encourages fine type distinc-
tions via algebraic data types as opposed to anonymous sums and
products. The specific data types usually serve for the identification
of interesting cases in a generic algorithm. For example, we used a
separate data type for Salary:

data Salary = S Float

If we had instead used an ordinary Float instead of Salary, and
if the Person type also included a Float (the person’s height, per-
haps) the increase of Section 3 might end up increasing everyones
height as well as their salary!

If this happens, one solution is to add more type distinctions. An-
other is simply to include some more context to the program. Thus,
instead of using mkT to build special case for Float, build a special
case for Employee:

increase k = everywhere (mkT (incE k))

incE :: Float -> Employee -> Employee
incS k (E p s) = E p (s * (1+k))

There is a dual problem, which is persuading the traversal functions
to stop. For example, the increase function will unnecessarily
traverse every character of the department’s name, and also of each
person’s name. (In Haskell, a String is just a list of Char.) From
the point of the generic function, it is entirely possible that there
might be a Salary buried inside the name.

The solution here is to give everywhere a generic query as an extra
argument, which returns True if the traversal should not visit the
sub-tree:

everywhereBut :: GenericQ Bool
-> GenericT -> GenericT

everywhereBut q f x
| q x = x
| otherwise = f (gmapT (everywhereBut q f) x)

increase k = everywhereBut names (mkT (incS k))

names :: GenericQ Bool
names = False ‘mkQ‘ isName

isName :: String -> Bool
isName n = True

6Actually, Section 3 gave a monomorphic type to increase,
whereas we need it to have a generic type here, so we would have
to adjust its type signature.

7



7.4 Compound type extension

Continuing the same example, what if there happened to be two or
more uninteresting types, that we wanted to refrain from traversing?
Then we would need a generic query that returned True for any of
those types, and False otherwise. Compound type extensions like
this are the topic of this section.

The general question is this: given a generic query, how can we
extend it with a new type-specific case? We need extQ, a cousin of
mkQ:

extQ :: (Typeable a, Typeable b)
=> (a -> r) -> (b -> r) -> (a -> r)

(q ‘extQ‘ f) a = case cast a of
Just b -> f b
Nothing -> q a

We can now build a generic query that has arbitrarily many special
cases simply by composing extQ. There are similar type-extension
functions, extT and extM, that allow a generic transformation to
have an arbitrary number of type-specific cases.

Here is a more interesting example. Suppose we want to generate
an association list, giving the total head-count for each department:

headCount :: Company -> [(Name,Int)]
headCount c = fst (hc c)

type HcInfo = ([(Name,Int)], Int)

hc :: GenericQ HcInfo

The main generic function, hc, returns an HcInfo; that is, a pair of
the desired association list together with the total head count of the
sub-tree. (Returning a pair in this way is just the standard tupling
design pattern, nothing to do with generic programming.) First we
define the the type-specific cases for the two nodes of interest: Dept
and Person

hcD :: Dept -> [HcInfo] -> HcInfo
hcD (D d _ us) kids = ((d,n):l, n)

where
(l,n) = addResults kids

hcP :: Person -> [HcInfo] -> HcInfo
hcP p _ = ([], 1)

addResults :: [HcInfo] -> HcInfo
addResults rs = (concat (map fst rs),

sum (map snd rs))

Each of them takes a list of HcInfo, the head-count information for
the child nodes (irrelevant for a Person), and the node itself, and
builds the head-count information for the node. For a person we
return a head-count of 1 and an empty list of departments; while for
a department we add the department to the list of sub-departments,
plus one for the manager herself. Now we can combine these func-
tions using a new traversal combinator queryUp:

queryUp :: (forall a. Term a => a -> [r] -> r)
-> GenericQ r

queryUp f x = f x (gmapQ (queryUp f) x)

hc :: GenericQ HcInfo
hc = queryUp (hcG ‘extQ‘ hcP ‘extQ‘ hcD)

hcG :: Term a => a -> [HcInfo] -> HcInfo

hcG node kids = addResults kids

Here queryUp first deals with the children (via the call to gmapQ),
and then applies the specified function to the node x and the query
results of the children. The main function, hc, calls queryUp with a
function formed from a generic case hcG, with two type extensions
for hcP and hcD. (We are using generic queries with result type
[r]->r here, a nice example of higher-order programming.)

7.5 Strange types

Programming languages like ML and Haskell permit rather free-
wheeling data type definitions. Algebraic data types can be mu-
tually recursive, parameterised (perhaps over higher-kinded type
variables), and their recursion can be non-uniform. Here are some
typical examples (the last one is taken from [3]):

data Rose a = MkR a [Rose a]
data Flip a b = Nil | Cons a (Flip b a)

data E v = Var v | App (E v) (E v)
| Lam (E (Inc v))

data Inc v = Zero | Succ v

For all of these the Term instance declaration follow the usual form.
For example, here is the Term instance for Rose:

instance Term a => Term (Rose a) where
gmapT f (MkR a rs) = MkR (f a) (f rs)
gmapQ f (MkR a rs) = [f a, f rs]
gmapM f (MkR a rs) = do a’ <- f a

rs’ <- f rs
return (MkR a’ rs’)

Components of algebraic data types can also involve local quanti-
fiers and function types. The former do not necessitate any specific
treatment. As for the latter, there is of course no extensional way
to traverse into function values unless we meant to traverse into the
source code of functions. However, encountering functions in the
course of traversal does not pose any challenge. We can treat func-
tions as atomic data types, once and for all, as shown here:

instance Term (a -> b) where
gmapT f x = x
gmapQ f x = []
gmapM f x = return x

The encoding scheme for the type-safe cast operator as presented
in Section 4 is generally applicable as well. This is because the
scheme is not at all sensitive to the structure of the datatype com-
ponents, but it only deals with the names of the datatypes and the
names of their parameter types or type constructors.

8 Generalising gmap

We have seen three different maps, gmapT, gmapQ, and gmapM. They
clearly have a lot in common, and have a rich algebra. For example:

gmapT id � id
gmapT f . gmapT g � gmapT (f . g)
gmapQ f . gmapT g � gmapQ (f . g)

Two obvious questions are these: (a) might a new application re-
quire a new sort of gmap? (b) can we capture all three as special
cases of a more general combinator?

So far as (a) is concerned, any generic function must have type

Term a => a -> F
�
a �

8



for some type-level function F . We restrict ourselves to type-
polymorphic functions F; that is, F can return a result involving a,
but cannot behave differently depending on a’s (type) value. Then
we can see that F can be the identity function (yielding a generic
transformation), ignore a (yielding a query), or return some com-
pound type involving a. In the latter case, we view F

�
a � as the

application of a parameterised type constructor. We covered the
case of a monad via gmapM but we lack coverage for other type con-
structors. So indeed, a generic function with a type of the form

Term a => a -> (a,a)

is not expressible by any of our gmap functions.

But all is not lost: the answer to question (b) is “yes”. It turns
out that all the heterogeneous maps we have seen are just special
instances of a more fundamental scheme, namely a fold over con-
structor applications. At one level this comes as no surprise: from
dealing with folds for lists and more arbitrary datatypes [21], it is
known that mapping can be regarded as a form of folding. However,
it is absolutely not straightforward to generalise the map-is-a-fold
idea to the generic setting, because one usually expresses map as
a fold by instantiating the fold’s arguments in a data-type-specific
way.

In this section we show that by writing fold in a rather cunning
way it is nevertheless possible to express various maps in terms
of a single fold in a generic setting. Before diving in, we remark
that this section need not concern the application programmer: our
three gmaps have been carefully chosen to match a very large class
of applications directly.

8.1 The generic fold

We revise the class Term for the last time, adding a new operator
gfoldl. We will be able to define all three gmap operators using
gfoldl but we choose to leave them as methods of the class for
efficiency reasons.

class Typeable a => Term a where
gmapT :: (forall b. Term b => b -> b) -> a -> a
gmapQ :: (forall b. Term b => b -> r) -> a -> [r]
gmapM :: Monad m

=> (forall b. Term b => b -> m b) -> a -> m a

gfoldl :: (forall a b. Term a => w (a -> b)
-> a -> w b)

-> (forall g. g -> w g)
-> a -> w a

Trying to understand the type of gfoldl directly can lead to brain
damage. It is easier to see what the instances look like. Here is the
instance for the types Employee and SubUnit:

instance Term SubUnit where
gfoldl k z (PU p) = z PU ‘k‘ p
gfoldl k z (DU d) = z DU ‘k‘ d

instance Term Employee where
gfoldl k z (E p s) = (z E ‘k‘ p) ‘k‘ s

Notice that the constructor itself (E, or PU etc) is passed to the z
function as a base case; this is the key difference from a vanilla fold,
and is essential to generic definitions of gmapT etc using gfoldl. In
particular:

gfoldl ($) id x � x

That is, instantiating z to the identity function, and k to function
application ($) simply rebuilds the input structure. That is why we
chose a left-associative fold: because it matches the left-associative
structure of function application.

8.2 Using gfoldl

We will now show that gmapT and friends are just special instances
of gfoldl. That idea is familiar from the world of lists, where map
can be defined in terms of foldr. Looking at an instance helps to
make the point:

gmapT f (E p s) = E (f p) (f s)
gfoldl k z (E p s) = (z E ‘k‘ p) ‘k‘ s

How can we instantiate k and z so that gfoldl will behave like
gmapT? We need z to be the identity function, while k should be
defined to apply f to its second argument, and then apply its first
argument to the result:

gmapT f = gfoldl k id
where
k c x = c (f x)

Operationally this is perfect, but the types are not quite right. gmapT
returns a value of type a while gfoldl returns a (w a). We would
like to instantiate w to the identity function (at the type level), ob-
taining the following specialised type for gfoldl:

gfoldl :: (forall a b. Term a => (a -> b)
-> a -> b)

-> (forall g. g -> g)
-> a -> a

However, functions at the type level make type inference much
harder, and in particular, Haskell does not have them. The solu-
tion is to instantiate w to the type constructor ID accompanied by
some wrapping and unwrapping:

newtype ID x = ID x

unID :: ID a -> a
unID (ID x) = x

gmapT f x = unID (gfoldl k ID x)
where

k (ID c) x = ID (c (f x))

The ID constructor, and its deconstructor unID are operationally no-
ops, but they serve to tell the type checker what to do. The encoding
of gmapM is very similar to the one for gmapT. We use do notation
instead of nested function application. The type of gmapM does not
require any wrapping because the monad type constructor directly
serves for the parameter w. That is:

gmapM f = gfoldl k return
where

k c x = do c’ <- c
x’ <- f x
return (c’ x’)

The last one, gmapQ, is a little more tricky because the structure
processed by gfoldl is left-associative, whereas the structure of
the list returned by gmapQ is right-associative. For example:

gmapQ f (E p s) = f p : (f s : [])
gfoldl k z (E p s) = (z E ‘k‘ p) ‘k‘ s

There is a standard way to solve this, using higher-order functions:

9



gmapQ f = gfoldl k (const id) []
where

k c x rs = c (f x : rs)

However, again we must do some tiresome type-wrapping to ex-
plain to the type inference engine why this definition is OK:

newtype Q r a = Q ([r]->[r])
unQ (Q f) = f

gmapQ f x = unQ (gfoldl k (const (Q id)) x) []
where

k (Q c) x = Q (\rs -> c (f x : rs))

Notice that (Q r) is a constant function at the type level; it ignores
its second parameter a. Why? Because a query returns a type that
is independent of the type of the argument data structure.

8.3 Summary

We contend that one-layer folding is the fundamental way to per-
form term traversal in our framework. This section has shown that
the gmap functions can all be defined in terms of a single function
gfoldl. Lest the involved type-wrapping seems onerous, we note
that it occurs only in the definitions of the gmap functions in terms
of gfoldl. The programmer need never encounter it. The gmap
definitions in terms of gfoldl might not be very efficient because
they involve some additional amount of higher-order functions. So
the programmer or the implementor of the language extension has a
choice. Either the gmap operators are defined directly per datatype,
or they are defined in terms of gfoldl once and for all via the
shown “default” declarations.

9 Related work

9.1 Rank-2 types

The Hindler-Milner type system is gracefully balanced on a cusp
between expressiveness and decidability. A polymorphic type
maybe be quantified only at the outermost level — this is called
a rank-1 type — but in exchange a type inference engine can find
the most general type for any typeable program, without the aid of
any type annotations whatsoever.

Nevertheless, higher-ranked types are occasionally useful. A good
example is the type of build, the list-production combinator that is
central to the short-cut deforestation technique [6]. Its type is:

build :: forall a. (forall b. (a->b->b) -> b -> b)
-> [a]

Another example is runST, the combinator that encapsulates a state-
ful computation in a pure function [18]:

runST :: forall a. (forall s. ST s a) -> a

It is well known that type inference for programs that use higher-
ranked types is intractable [16]. Nevertheless, it is not only tractable
but easy if sufficient type annotations are given [23]. The two
Haskell implementations GHC and Hugs support data constructors
with rank-2 types; the type inference problem is easier here because
the data constructor itself acts as a type annotation. However that
would be very inconvenient here: gmapT is not a data constructor,
and it would require tiresome unwrapping to make it so.

So in fact GHC uses a type inference algorithm that permits any
function to have a type of arbitrary-rank type, provided sufficient
type annotations are given. The details are beyond the scope of this

paper, but are given in [30]. We believe that the gmap family of
functions offers further evidence of the usefulness of rank-2 types
in practical programming.

9.2 Type-safe cast

There are two main ways to implement a type-safe cast, each with
an extensive literature: intensional type analysis; or dynamic typ-
ing.

Intensional type analysis enables one to write functions that depend
on the (run-time) type of a value [8, 36]. To this end, one uses a
typecase construct to examine the actual structure of a type pa-
rameter or the type of a polymorphic entity, with case alternatives
for sums, products, function types, and basic datatypes. This struc-
tural type analysis can also be performed recursively (as opposed to
mere one-level type case). Checking for type equality is a standard
example, and so looks like a promising base for a type-safe cast, as
Weirich shows [35].

There are two difficulties. First, adding intensional polymorphism
to the language is a highly non-trivial step. Second, and even more
seriously, all the work on intensional polymorphism is geared to-
wards structural type analysis, whereas our setting absolutely re-
quires nominal type analysis (cf. [7]). For example, these two types
are structurally equal, but not nominally equal:

data Person = P String String
data Dog = D String String

We should not treat a Person like a Dog — or at least we should
allow them to be distinguished.

There is a great deal of excellent research on introducing dynamic
types into a statically-typed language; for example [1, 2, 19]. How-
ever, it addresses a more general question than we do, and is there-
fore much more complicated than necessary for our purpose. In
particular, we do not need the type Dynamic, which is central to
dynamic-typing systems, and hence we do not need typecase ei-
ther, the principal language construct underlying dynamic typing.

The class Typeable and the unsafeCoerce function, are the foun-
dation of the Dynamic library, which has been a standard part of the
Hugs and GHC distributions for several years. However, it seems
that the material of Section 4 has never appeared in print. The key
idea first appeared in an 1990 email from one of the current au-
thors to the (closed) fplanc mailing list [26], later forwarded to the
(open) Haskell mailing list [12]. The cast function is not so well
known, however; the first reference we can trace was a message to
the Haskell mailing list from Henderson [9].

9.3 Generic traversal

Polytypic programming

The core idea underlying polytypic programming [15, 14, 10] is to
define a generic function by induction on the structure of some type,
typically the argument or result type of a function. Induction is usu-
ally supported by a corresponding language extension: the function
definition has cases for sums, products, and others. This approach
initially leads to purely-generic functions; that is, ones driven en-
tirely by the structure of the type. Examples include serialisation
and its inverse, comparison operations, and hashing. Unfortunately,
these are just about the only purely-generic operations, and our own
view is that purely-generic programming is too restrictive to be use-
ful.

10



Thus motivated, there is ongoing work in the Generic Haskell pro-
gram to enable the programmer to customise generic programs.
In [4], techniques are discussed to extend a polytypic function with
cases for a particular constructor or a type. Generic Haskell is a
very substantial extension to Haskell, whereas our proposal is much
more lightweight and better integrated with ordinary functional pro-
gramming. Furthermore, in Generic Haskell, a generic function is
not a first-class citizen. That is, one cannot write generic functions
operating on other generic functions, as our traversal combinators
(e.g., everywhere) require. Using techniques such as those in [4],
one can however encode the corresponding traversals.

Derivable type classes [11] is another extension of Haskell to sup-
port generic programming. The idea here is that a generic function
is just a template that specifies how to generate an instance dec-
laration for the generic function for each data type. It is easy to
over-ride this template for specific types. Again, derivable type-
classes are oriented towards structural induction (not nominal anal-
ysis) over types; recursion is built into each generic function; and
each new generic function requires a new class or the revision of an
existing class.

Generalised folds

It is a well-established idea that maps and folds can be defined for
all kinds of datatypes, even for systems of datatypes [21, 28, 22].
The inherent assumption is here that recursion into compound terms
is performed by the fold operation itself. This sets this idea apart
from our simpler and yet more general approach where layer-wise
traversal is favoured. This way, we allow the programmer to wire
up recursion in any way that is found convenient. Besides the an-
ticipated recursion, generalised folds suffer from another problem
articulated in [17]: if larger systems of datatypes are considered, it
is impractical to enumerate all the ingredients for folding by hand.
In effect, we have another instance of boilerplate: most ingredients
follow a certain scheme, only few ingredients should be provided by
the programmer. To this end, updatable generalised fold algebras
were proposed in [17]. The present development generalises (up-
datable) generalised folds in several dimensions. Firstly, function
extension can operate at the type level whereas fold algebras are up-
dated at the constructor level. Secondly, generic traversal allows to
define all kinds of traversal schemes as opposed to simple catamor-
phic or paramorphic fold. Thirdly, the fold algebra approach suffers
from a closed-world assumption. No such assumption is present in
our present development.

The non-recursive map trick

The non-recursive map trick (introduced in Sections 3.2 and 3.3)
has been known in the functional programming community for
some time, e.g., in the sense of programming with functors [21, 27].
In this approach, for every recursive data type, Tree say, one defines
an auxiliary type, Tree’ that is the functor for Tree:

data Tree a = Leaf a | Fork (Tree a) (Tree a)
data Tree’ t a = Leaf’ a | Fork’ t t

Now the following type isomorphism holds:

Tree’ (Tree a) a � Tree a

Recursive traversals can then be defined as recursive functions in
terms of a one-layer functorial map. To use this approach directly
for practical programming, one needs to write functions to convert
to and from between these the above isomorphic types, and the sit-
uation becomes noticeably more complicated when there are many

mutually-recursive types involved [31, 27], and breaks down alto-
gether when the recursion is non-uniform [24]:

data Seq a = Nil | Cons a Seq (a,a)

In contrast, our approach does not require an auxiliary data type,
works fine for arbitrary datatypes. and it also copes with systems
of mutually recursive datatypes. This is a major improvement over
previous work.

The idea of building a library of combinators that encode first-class
tree-traversal strategies [32] (e.g. top-down, bottom-up, repeat-
until, leftmost-first, etc) in terms of one-layer traversal steps is also
well established in the term-rewriting community. This idea has
seen a flurry of recent activity. There are three main approaches to
the combinator style. One is to define a new language for strategic
programming. A prime example is the untyped language Stratego
[32]. Another approach that can also be used to support strategies in
an existing functional language is to transform the input data into a
single universal data type, and write generic strategies over that uni-
versal data type; a good example is the HaXML combinator library
[34]. Yet another approach that works particularly well with func-
tional programming is to model strategies as abstract datatypes. The
implementations of the strategy combinators can then hide some en-
coding needed to present “strategies as functions” to the program-
mer. This approach underlies the Strafunski programme.7 All these
streams of work describe a rich library of strategy combinators. Our
new contribution is to show

how this strategic-combinator approach to term traversal
can be smoothly accommodated in a typed functional
language, where term traversals are plain functions on
the user-provided datatypes.

The employment of rank-2 types and the identification of the fun-
damental folding operator improves on previous work that favoured
typeful encodings and ad-hoc selections of one-layer traversal op-
erators.

The visitor pattern

In object-oriented programming, the visitor pattern is the classic
incarnation of recursive traversal. In fact, though, an instance of
the visitor pattern is rather like the problematic increase that we
started with in Section 2: the visitor requires a case for each data
type (class), and the traversal is mixed up with the processing to be
done to each node [25]. Many variations on the basic visitor pattern
have been proposed. Palsberg suggests a more generic alternative,
the Walkabout class, based on reflection; its performance is poor,
and Palsberg offers an interesting discussion of other design choices
[25]. A generative approach to flexible support for programming
with visitors is suggested by Visser [33] accompanied with a dis-
cussion of other generative approaches. Given a class hierarchy,
an interface for visitor combinators is instantiated very much in the
style of strategic programming (see below). Node processing and
recursive traversal is effectively separated, and different traversal
schemes can be chosen.

Adaptive programming offers a more abstract approach to traversal
of object structures [20]. This style assumes primitives to specify
pieces of computation to performed along paths that are constrained
by starting nodes, nodes to be passed, nodes to be by-passed, and
nodes to be reached. Adaptive programs are typically implemented
by a language extension, a reflection-based API, or by compilation
to a visitor.

7http://www.cs.vu.nl/Strafunski

11



10 Concluding remarks

Contribution

We have presented a practical design pattern for generic program-
ming in a functional setting. This pattern encourages the program-
mer to avoid the implementation of tiresome and maintenance-
intensive boilerplate code that is typically needed to recurse into
complex data structures. This pattern is relevant for XML docu-
ment processing, language implementation, software reverse and
re-engineering. Our approach is simple to understand because it
only involves two designated concepts of one-layer traversal and
type cast. Our approach is general because it does not restrict
the datatypes subject to traversal, and it allows to define arbitrary
traversal schemes — reusable ones but also application-specific
ones. Language support for the design pattern was shown to be
simple. The approach is well-founded on research to put rank-2
type systems to work.

Performance

Our benchmarks show that generic programs are reasonably effi-
cient (see also the accompanying software distribution). The (naive)
generic program for the introductory example of salary increase, for
example, is 3.5 times slower 8 than the hand-coded solution where
all the boilerplate code is spelled out by the programmer. The re-
ported penalty is caused by three factors. Firstly, generic traversal
schemes need to check for every encountered node at run-time if the
underlying monomorphic branches are applicable. A hand-written
solution does not involve any such checks. Secondly, generic traver-
sal schemes are not accessible to a number of optimisations which
are available for hard-wired solutions. This is because the gmap
family relies on the Term class and some amount of higher-order
style. Thirdly, we recall the problem that generic traversals tend to
traverse more nodes than necessary if extra precautions omitted to
stop recursion.

Perspective

We are currently investigating options to support the key combina-
tors cast and gfoldl (or the gmap family) efficiently by the GHC
compiler for Haskell. Such a native implementation will remove
the penalty related to the comparison of type representations, and
it will render external generative tool support unnecessary. As the
paper discusses, such built-in support is not hard to provide. We
are further working on automating the derivation of stop conditions
for traversals based on properties of the recursive traversal schemes
and the traversed data structure. We envisage that a template-based
approach [29] can be used to derive optimised traversals at compile
time.

Acknowledgements

We thank Nick Benton, Robert Ennals, Johan Jeuring, Ralf Hinze,
Tony Hoare, Simon Marlow, Riccardo Pucella, Colin Runciman,
and Stephanie Weirich for their very helpful feedback on earlier
drafts of this paper. Joost Visser helped us with the tool support,
but he also contributed several important insights.

8Test environment: Linux-i386, Pentium III, 512 MB, 256 KB
cache, Thinkpad A22p, GHC 5.04 with optimisation package en-
abled.

11 References

[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic
typing in a statically-typed language. In 16th ACM Confer-
ence on Principles of Programming Languages, pages 213–
227, Jan. 1989.

[2] M. Abadi, L. Cardelli, B. Pierce, and D. Remy. Dynamic
typing in polymorphic languages. In Proceedings of the 1992
ACM Workshop on ML and its Applications, pages 92–103,
San Francisco, June 1992.

[3] R. Bird and R. Paterson. De Bruijn notation as a nested
datatype. Journal of Functional Programming, 9(1):77–91,
Jan. 1999.

[4] D. Clarke and A. Löh. Generic Haskell, Specifically, 2002.
accepted at WCGP 2002; to appear.

[5] ACM Conference on Functional Programming and Computer
Architecture (FPCA’93), Cophenhagen, 1993. ACM. ISBN
0-89791-595-X.

[6] A. Gill, J. Launchbury, and S. Peyton Jones. A short cut to de-
forestation. In FPCA93 [5], pages 223–232. ISBN 0-89791-
595-X.

[7] N. Glew. Type dispatch for named hierarchical types. In
Proceedings of the Fourth ACM SIGPLAN International Con-
ference on Functional Programming (ICFP-99), volume 34.9
of ACM Sigplan Notices, pages 172–182, N.Y., Sept. 27–29
1999. ACM Press.

[8] R. Harper and G. Morrisett. Compiling polymorphism using
intensional type analysis. In 22nd ACM Symposium on Princi-
ples of Programming Languages (POPL’95), pages 130–141.
ACM, Jan. 1995.

[9] F. Henderson. Dynamic type class casts proposal. Email to
the haskell mailing list, Oct. 1999.

[10] R. Hinze. A New Approach to Generic Functional Program-
ming. In T. Reps, editor, Proceedings of the 27th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, Boston, Massachusetts, January 19-
21, pages 119–132, Jan. 2000.

[11] R. Hinze and S. Peyton Jones. Derivable type classes. In
G. Hutton, editor, Proceedings of the 2000 Haskell Workshop,
Montreal, number NOTTCS-TR-00-1 in Technical Reports,
Sept. 2000.

[12] P. Hudak. Phil’s proposal for restricted type classes. Email to
the haskell mailing list, June 1991.

[13] R. Hughes, editor. ACM Conference on Functional Program-
ming and Computer Architecture (FPCA’91), volume 523 of
Lecture Notes in Computer Science, Boston, 1991. Springer
Verlag.

[14] P. Jansson and J. Jeuring. PolyP - a polytypic programming
language extension. In 24th ACM Symposium on Principles of
Programming Languages (POPL’97), pages 470–482, Paris,
Jan. 1997. ACM.

[15] J. Jeuring and P. Jansson. Polytypic programming. In
J. Launchbury, E. Meijer, and T. Sheard, editors, 2nd Int.
School on Advanced Functional Programming, Olympia, WA,
USA, 26–30 Aug 1996, volume 1129 of LNCS, pages 68–114.
Springer-Verlag, Berlin, 1996.

[16] A. Kfoury. Type reconstruction in finite rank fragments of
second-order lambda calculus. Information and Computation,

12



98(2):228–257, June 1992.

[17] R. Lämmel, J. Visser, and J. Kort. Dealing with Large Ba-
nanas. In J. Jeuring, editor, Proceedings of WGP’2000, Tech-
nical Report, Universiteit Utrecht, pages 46–59, July 2000.

[18] J. Launchbury and S. Peyton Jones. State in Haskell. Lisp and
Symbolic Computation, 8(4):293–342, Dec. 1995.

[19] X. Leroy and M. Mauny. Dynamics in ML. In Hughes [13].

[20] K. Lieberherr. Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns. PWS Publish-
ing Company, Boston, 1996.

[21] E. Meijer, M. Fokkinga, and R. Paterson. Functional Pro-
gramming with Bananas, Lenses, Envelopes, and Barbed
Wire. In Hughes [13], pages 124–144.

[22] E. Meijer and J. Jeuring. Merging Monads and Folds for
Functional Programming. In J. Jeuring and E. Meijer, editors,
Advanced Functional Programming, volume 925 of Lecture
Notes in Computer Science, pages 228–266. Springer Verlag,
1995.

[23] M. Odersky and K. Läufer. Putting type annotations to work.
In 23rd ACM Symposium on Principles of Programming Lan-
guages (POPL’96), pages 54–67. ACM, St Petersburg Beach,
Florida, Jan. 1996.

[24] C. Okasaki. Purely functional data structures. Cambridge
University Press, 1998.

[25] J. Palsberg and B. Jay. The essence of the visitor pattern. In
Proceedings 22nd Annual International Computer Software
and Applications Conference (COMPSAC’98), pages 9–15,
Aug. 1998.

[26] S. Peyton Jones. Restricted overloading. Email to the
fplangc mailing list, Dec. 1990.

[27] T. Sheard. Generic unification via Two-Level types and pa-
rameterized modules. In ACM SIGPLAN International Con-
ference on Functional Programming (ICFP’01), volume 36,
10 of ACM SIGPLAN notices, pages 86–97, Florence, Sept.
2001. ACM.

[28] T. Sheard and L. Fegaras. A fold for all seasons. In FPCA93
[5], pages 233–242. ISBN 0-89791-595-X.

[29] T. Sheard and S. Peyton Jones. Template meta-programming
for Haskell. In M. Chakravarty, editor, Proceedings of the
2002 Haskell Workshop, Pittsburgh, Oct. 2002.

[30] M. Shields and S. Peyton Jones. Putting “putting type anno-
tations to work” to work. In preparation, 2002.

[31] S. Swierstra, P. Alcocer, and J. Saraiva. Designing and imple-
menting combinator languages. In S. Swierstra, P. Henriques,
and J. Oliveira, editors, Advanced Functional Programming,
Third International School, AFP ’98, volume 1608 of Lecture
Notes in Computer Science, pages 150–206, Braga, Portugal,
Sept. 1999. Springer Verlag.

[32] E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building pro-
gram optimizers with rewriting strategies. In ACM SIG-
PLAN International Conference on Functional Programming
(ICFP’98), volume 34(1) of ACM SIGPLAN Notices, pages
13–26, Baltimore, 1998. ACM.

[33] J. Visser. Visitor combination and traversal control. In
OOPSLA 2001 Conference Proceedings: Object-Oriented
Programming Systems, Languages, and Applications. ACM
Press, 2001.

[34] M. Wallace and C. Runciman. Haskell and XML: Generic
combinators or type-based translation. In ACM SIG-
PLAN International Conference on Functional Programming
(ICFP’99), pages 148–159, Paris, Sept. 1999. ACM.

[35] S. Weirich. Type-safe cast. In ACM SIGPLAN International
Conference on Functional Programming (ICFP’00), pages
58–67, Montreal, Sept. 2000. ACM.

[36] S. Weirich. Higher-order intensional type analysis. In D. L.
Métayer, editor, Programming Languages and Systems: 11th
European Symposium on Programming (ESOP 2002), Greno-
ble, France, number 2305 in LNCS, pages 98–114. Springer
Verlag, 2002.

[37] N. Winstanley. A type-sensitive preprocessor for Haskell. In
Glasgow Workshop on Functional Programming, Ullapool,
1997.

13


