
EECS 391 Project: Forward chaining in Python

John Lambert – jlambert@jlambert.com

May 6, 2002

Contents

1 Introduction 1

2 Approach 2
2.1 Rules . 2

2.1.1 Encoding . 2
2.1.2 Program representation . 3

2.2 Knowledge . 3
2.3 Algorithm . 3
2.4 Bonus: conclusion hierarchy . 4

3 Sample runs 4
3.1 Input rules from rules.txt . 4
3.2 Graph of rules . 5
3.3 Animals . 5

3.3.1 Tiger . 5
3.3.2 Penguin . 5
3.3.3 Zebra . 6
3.3.4 Nightmare . 6

4 Summary and conclusions 6

A Source code 7

References 7

1 Introduction

This system is for forward-chaining rule-based systems written in Python. It takes a plain-text file
of rules as input and outputs a graph, generated using dotty [1], of the relationships between facts
and conclusions, as well as how it reached them for a given set of base knowledge. All examples in
this report use the Zookeeper rules presented in [2], but the system will work with similar rules in
any problem domain.

1

2 Approach

There are three main sections to the implementation: the rules, knowledge representation, and the
algorithm for doing the actual forward chaining.

2.1 Rules

2.1.1 Encoding

Rules are stored as lines in a file. They consist of two parts: an if expression and a then conclusion
and are written like if part expression -> then conclusion. The if expression is the set of
facts which must be true for the then conclusion to be true. For example, Rule Z14 from the
textbook [2, page 124], is:

If ?x is a bird
?x does not fly
?x has long legs
?x has a long neck
?x is black and white

then ?x is an ostrich

This rule is encoded in rules.txt as:

ostrich rule

is bird and not flies and (has long legs and has long neck) \
and has black and white color -> is ostrich

Several things are worth noting:

1. There are no spaces in any of the terms: “has long neck” becomes has long neck.

2. Negation is explicitly specified: “does not fly” was represented as not flies.

3. The original rule contained implicit ands; these are explicitly placed in the if part of the
rule.

4. There is one rule per line; the \ is only present in this document.

5. One-line comments are allowed and are set off with # as the first character.

6. There are parentheses in the rule, although they serve no functional purpose in this specific
rule.

7. The or operation is allowed, although it is not present in this specific rule.

The rules in rules.txt are verified to make sure they are valid: properly parenthesized with
one and only one conclusion.

2

2.1.2 Program representation

The rules are stored in memory as a list1 of two-item tuples2. The first item is the if expression
and the second part is the then conclusion:

[(’has_hair’, ’is_mammal’),

(’gives_milk’, ’is_mammal’),

(’has_feathers’, ’is_bird’),

(’flies and lays_eggs’, ’is_bird’),

(’is_mammal and eats_meat’, ’is_carnivore’),

...

]

2.2 Knowledge

Now that we have our rules processed, we want to create some baseline knowledge about a concept.
This breaks down into two things: things we know to be true and things we know to be false.

For example, we know that Tux has feathers, swims, and has black and white color. Also, Tux
does not fly. We represent this with a map3 from a condition to a true (1) or false (0) value:

{

’flies’: 0,

’has_black_and_white_color’: 1,

’has_feathers’: 1,

’swims’: 1

}

2.3 Algorithm

Now that we have our base knowledge and our rules, we follow the algorithm presented on [2, page
128].

• While we are still finding new conclusions:4

– For each r in Rules:

1. Set the antecedants to be the if part of r

2. Set the conclusion to be the then part of r

3. For each item in our base knowledge:

1In Python, a list is a sequence of arbitrary length containing data of any type. It is zero-indexed and displayed
as [4, 53, ’test’].

2In Python, a tuple is a data structure of fixed arity containing data of any type. A two-tuple t has items at 0
and 1 and is displayed as (4, ’test’).

3In Python, a map is an associative container which takes a key to a value, like a hash table. The map m displayed
as {’another key’: 0, ’key’: 1} takes ’key’ to the value 1 when accessed as m[’key’].

4Since this is a general system, we use this as a stopping point instead of identifying an animal.

3

∗ Replace every occurance of the item in the antecedant with the known value for
that item5

4. If the antecedant is a valid logical expression6 and the antecedant evaluates to 1:

∗ Indicate that rule r has been fired

∗ Draw links from the antecedants to the conclusion, possibly with a box for the
rule

∗ Indicate that we made a new conclusion

∗ Add the conclusion to our base knowledge with a value of 1 so we can use it for
remaining rules

2.4 Bonus: conclusion hierarchy

In order to help test the system, I had it display the “chain of inferences” possible for any given
rule set. The algorithm is:

• For each r in Rules:

– For each term in the antecedant of r:

∗ Draw a link from term to r’s conclusion

∗ If the term is negated, then label the link with “not”

3 Sample runs

The sample runs are for the Zookeeper system.

3.1 Input rules from rules.txt

has_hair -> is_mammal

gives_milk -> is_mammal

has_feathers -> is_bird

flies and lays_eggs -> is_bird

is_mammal and eats_meat -> is_carnivore

is_mammal and has_pointed_teeth and has_claws

and has_forward_pointing_eyes -> is_carnivore

is_mammal and has_hoofs -> is_ungulate

is_mammal and chews_cud -> is_ungulate

is_carnivore and has_tawny_color and has_dark_sports -> is_cheetah

5For example, (is mammal and has hoofs) becomes (is mammal and 0)
6For example, 1 and (1 or not 0), or 0 and unknown, which will evaluate to 0 in all cases

4

is_carnivore and has_tawny_color and has_black_stripes -> is_tiger

is_ungulate and has_long_neck and has_long_legs

and has_dark_spots -> is_giraffe

is_ungulate and has_black_stripes -> is_zebra

bird rules

is_bird and not flies and has_long_legs and has_long_neck

and has_black_and_white_color -> is_ostrich

is_bird and swims

and (not flies and has_black_and_white_color) -> is_penguin

is_bird and flies -> is_albatross

3.2 Graph of rules

See Figure 1 on page 8 for the relationship between facts and rules. Figure 2 on page 9 for the
relationship between facts.

3.3 Animals

3.3.1 Tiger

This is the base knowledge for Tiger. (Note that it does not fly; this was just extra information to
see how the system would respond.)

{ ’eats_meat’: 1,

’flies’: 0,

’gives_milk’: 1,

’has_black_stripes’: 1,

’has_tawny_color’: 1}

Figures 3 on page 10 shows with rule boxes, and Figure 4 on page 10 shows it without rule
boxes. It came to the appropriate conclusions: is mammal, is carnivore, is tiger. (Any oval
that is not in the base knowledge box is an inferred conclusion.)

3.3.2 Penguin

Tux the Penguin has the following base knowledge:

{ ’flies’: 0,

’has_black_and_white_color’: 1,

’has_feathers’: 1,

’swims’: 1}

Figures 5 on page 11 shows with rule boxes, and Figure 6 on page 11 shows it without rule
boxes. It came to the appropriate conclusions: is bird, is penguin

5

3.3.3 Zebra

The Zebra has the following base knowledge:

{ ’gives_milk’: 1,

’has_black_stripes’: 1,

’has_hair’: 1,

’has_hoofs’: 1}

Figures 7 on page 12 shows with rule boxes, and Figure 8 on page 13 shows it without rule
boxes. It came to the appropriate conclusions: is mammal, is ungulate, is zebra

3.3.4 Nightmare

I remembered one of my cousins attempting to describe a creature in one of his dreams. Obviously,
this doesn’t exist, but it’s interesting to see the conclusions drawn.

{ ’eats_meat’: 1,

’flies’: 1,

’gives_milk’: 1,

’has_black_stripes’: 1,

’has_dark_spots’: 1,

’has_feathers’: 1,

’has_hoofs’: 1,

’has_long_legs’: 1,

’has_long_neck’: 1}

Figures 9 on page 14 shows with rule boxes, and Figure 10 on page 15 shows it without rule
boxes. It came to several conclusions: is albatross, is bird, is carnivore, is giraffe,

is mammal, is ungulate, is zebra. These are neither correct nor incorrect; it’s a fictional ani-
mal.

4 Summary and conclusions

Proud I’m proud of the generic-ness: it works with other systems as well. (I made a simple one
to distinguish between vegan, vegetarian, ovo-lacto-vegetarian, and kosher; it worked.) I also like
the graphical output format: it makes it a lot easier to understand than pure-text output.

Improvements If I was going to improve it, I would add better input/output. There’s no input
now since it’s forward chaining: the user knows everything ahead of time and they can just input it
in the function call. I’m not quite happy with the handling of not: the formatting is sub-optimal
and I’d like it to be able to draw “negative conclusions” (animal products -> not vegan), which
opens a whole host of issues. It would be neat to “overlay” a specific instance of the system on
top of the full rule graph so you can see what paths were taken versus what paths were possible;
this is just an input/output issue, though. Also, or clauses and and clauses show up the same and
parentheses aren’t indicated on the graph at all.

6

Implementation Python’s eval function made things easy: I could just pass in some arbitrary
boolean expression and have it figure it out; I’d probably have to write a parser if I did this in
C++. Getting the output to be both correct and useful was difficult, and I had some termination
problems to start with.

Lessons learned I learned that the general solution was somewhat easier (and definately more
fun) to implement than the specific solution. Also, the choice of language can help speed up
implementation time. Backward chaining is good for testing specific hypotheses, especially if no
data has been collected: “Was that a tiger?” “Well, did it have a tawny color?” Forward chaining
is good when there is already data and the goal is to find out as much about it as possible: “It had
feathers, and it was swimming; what was it?”

A Source code

Source code is attached.

References

[1] Stephen C. North and Eleftherios Koutsofios. Application of graph visualization. In
Proceedings of Graphics Interface ’94, pages 235–245, Banff, Alberta, Canada, 1994.
http://www.research.att.com/sw/tools/graphviz/download.html. 1

[2] Patrick Henry Winston. Artificial Intelligence. Addison Wesley, 3rd edition, 1992. 1, 2.1.1, 2.3

7

http://www.research.att.com/sw/tools/graphviz/

Figure 1: Graph of rules

8

Figure 2: Graph of rules without rule boxes

9

Figure 3: Tiger with rule boxes

10

Figure 4: Tiger without rule boxes

11

Figure 5: Tux (Penguin) with rule boxes

12

Figure 6: Tux (Penguin) without rule boxes

13

Figure 7: Zebra with rule boxes

14

Figure 8: Zebra without rule boxes

15

Figure 9: Nightmare creature with rule boxes

16

Figure 10: Nightmare creature without rule boxes

17

	Introduction
	Approach
	Rules
	Encoding
	Program representation

	Knowledge
	Algorithm
	Bonus: conclusion hierarchy

	Sample runs
	Input rules from rules.txt
	Graph of rules
	Animals
	Tiger
	Penguin
	Zebra
	Nightmare

	Summary and conclusions
	Source code
	References

