Using stack traces to identify failed executions

in a Java distributed system

by

John Lambert

Submitted in Partial Fulfillment of the Requirements
for the Degree of

Master of Science

Advisor: Dr. H. Andy Podgurski

Department of Electrical Engineering and Computer Science

Case Western Reserve University

August 2002
Built on June 2, 2002 0:22

Using stack traces to identify failed executions in a Java
distributed system

CASE WESTERN RESERVE UNIVERSITY
GRADUATE STUDIES
June 3, 2002

We hereby approve the thesis of

John Lambert
candidate for the Master of Science
degree.

Committee Chair

Dr. H. Andy Podgurski
Thesis Advisor
Professor, Department of Electrical Engineering & Computer Science

Committee

Dr. Gultekin Ozsoyoglu

Department of Electrical Engineering & Computer Science

Committee

Dr. Lee White

Department of Electrical Engineering & Computer Science

*We also certify that written approval has been obtained for
any proprietary material contained therein.

DEDICATION

This thesis is dedicated to my mother and father for their support and

encouragement.

Contents

L1 Overview of thesis. oo oo v v
ILL1.1 Challengedo
|1 Previous solutiond

IL.1.2.1 Application-level loggingl
12?2 Runtime imstrumentation
L1 LO)C): more reasond
L1223 Controlled environmentd
L.1.2.4 Custom plattormg
L1la Thisworkl 0 0000 0000

L2 Problem detimitiono 0o
IL.2.1 Distributed system|
L2272 Communication mechamismds

L2211 bsocketd .. 00000000000

2272 Remote Procedure Calld

L.2.2.0 Objecty L

L.2.0 Our problem|.
IL.2.4 Generalizabiity]o 0L

.o Observation-based testing

111.1 T OD0: Re-write this about observation-based testingl .

v

g N O o O Rl R R W W W W W N N = e e

15}

41 Overview of xdProfl
4?2 xdProtrchenti
L.4.2.1 Java Virtual Machine Pronling Interracd
a2? Commiunication lhread
L4223 xdProt Data Formatl
L4224 Performancd
45 xdProtserverd 0oL
L4s1 Interfacedo
IL.4.5.2 Analysis lool§
Related workl 0L oL o0
IL.o.l Debuggng 0oL
Lao2Z Visuahzation
Lahas Java-related 0000000
L.o.4 doltware engineering|o ..
L.5.0 >equences, patterns, and tree§
IL.5.6 Distributed systemsg

Lo

lrademarkd

L./ Organization

2 SOFTWARE DESIGN

(2|

Ixor Clientfl

P11 Invocation Lo
k.1.2 Java Virtual Machine Pronling Intertacd
1o Communicafion thread
R.1.0.1 Details of algorithm|
E.1.o0.2 Droppmg packety
PT33 1TDP Port selectiond

10
10
12
12
13
14
15
18
18
18
19
19
19
20
20
20
21
21
22

30
32
32
34
35
38
38

214? Virtual machine choled

g.1.4.4 Class loading considerations

E.1.4 lmplications ol approach| . .
E.1.4.1 Synchronization . .
2143 (lass file information

21h Ixor ata Formaf

22

Ixor Served00 L.

g.2.1

Algorithm|

£2.2.2

Outputf.

.o Roxi Analysis lool

4

Differences with xdProi

p.2 Comparing executions

oooooooooooooooooooooooooo

pb.2.1 Comparing all executions cleverly]

b.2.2 Intuition for multiplying call stacks by occurrences

B.2.3 Intuition for Compare(a, b) + Compare(b,a)
b.o Comparing call stackg 0.
b4 Bdit distancd L L L L0 e e

b.4.2.2 Favor beginning strategyl

b4l Levenshteil
p.4.2 Location sensitive-strategieg

4?1 Favor end
132 [O1)(): (zenerate thisl . . .
535 ['O1)(): (zenerate thasl . . .
[15.4 10D0: Explanation

p.4.9

Call stack-sensitive strategied

39
39
39
40
41
41
44
44
45
45
45

50
51
52
53
54
54
55
57
57
57
59
60
60
62
62

pb.4.5.1 Call stack strategy L}

b.4.0.2 Call stack strategy 4

b.4.0.0 Call stack strategy o

b.o Gap distancd oL Lo
p.o.l Distance strategle§o

b.0 Call stack and stack frame counting
b.(Cluster analysig Lo
b/l Parameterd 0L 0o
B7TT Numberofclusferd

b.r.1.2 Clustering method

b.r.1.5 Clustering criterion runction

[[55 TODOU: Why thesed

b./.1.4 Scaling each row

B.7.1.5 Similarity]

g1 Possibilitied 00000 L Lo

BTT FCPerf. oo o

/ DOSY - - . . . e e
g.1.5 Jini lechnology Core Plattorm Compatibility Kiff

g.1.4 Applications selected

g.2 bully application]o oL

421 Architecturdo

g2 27 Bxecuflon HOW oL ...

g.2.2.1 Startingup 0000

4.6 1T0ODO: Architecture picturd « . o« o ..

a2l Election detaild

[14.7

64
66
67
69
71
71
71
72
72
72
72
73
73
74

75
76
76
7
7
7
79
79
79
80
81
81

[14.0 10D0: Sequence diagram|
[14.9 1T0D0: Sequence diagram|
B.2.0 Dpeciicatlono e e e e

g.0 DByzantine applicationo
g.0.1 Description of problem|
B.3.2 Algorithm
d.0.0 Implementationo

g.4 Fault mnjectiono
g.4.1 Fallure-inducing behavior§
B.4.2 Injection Lo

g.0 Application-level 1ssuedo
g.0.1 Bully — priority elevation
g.0.2 Dbyzantine —unloval generaly
d.0.0 Faults injectedo

L4 10 1T0OD0: Explawn resulty

L4 11 T0OD0: byzaniine jarures« . o . o oo .

4.0 Bvaluating the approachf
g.0.1 dSampling methody
g.0.1.1 Random sampling

g.0.1.2 l-per cluster samplng

£.06.1.0 n-per cluster samplingl

g.0.1.4 >mall-cluster samplingl

g.0.1.0 Adaptive samplingl

A7 Resulfd

|4 Distribution of tailured

. /.2 Smngletonyd

1 »

81
82
83
83
83
83
83
84
84
84
85
85
86
86
86
86
86
86
87
87
87
88
88
89
89
89
90
91

Ax Conclusion

bl Conclusion

b 2 bButure directiond

b3 Issnies with current workl

A XDPROF PERFORMANCE TESTINGS

94
94

97
97
97

List of Tables

LT JVMPI events used by xdProf] 23
[.LZ xdProf analysis tool inferfacd 27
.3 JVMPI events used by ITxord 34
R.4 Descriptor formatting 43
b.o Comparison ot Levenshtein with location-sensitive strategleq 59
B.6_Call stack operations and costs] 65
A7 Fanlfcounl 87
g.8 Percentage of tallures round 1n the subpopulations contained in |
[the smallest clusfersl 000000000 89
B.9 Average purities for Bully] 92
B.T0 Average purities for Byzantine] 93
g.11 Bully average percentage ot tailures detected with adaptive sam- |
[pling]. 95
g.12 byzantine average percentage of railures detected with adaptive |
[sampling] 96
A 1o DPRECOIVvIMYS results for sun Java 2 huntime Environment 1.5 |
[with HotSpot Client VM] 100
IA.14 Elapsed time on Sun 1.3 HotSpot Client VM (without xdProt |
| = 383.130 seconds)| 101

IA.15 Elapsed time on dbun 1.3 Classic VM (without xdProt = 3600.477 |

seconds)| L 101

[A. 16 SPEC ratios for Sun 1.3 HotSpot Client VM]. 102

IA.17 Network trafiic details tor Sun 1.5 HotSpot Clhient VM (without |

xdProt = 383.136 seconds)| 103

IA.18 Network tratfic details tor Sun 1.3 Classic VM (without xdProt |

= 3600.477 seconds)| 104

List of Figures

IL-1 Distributed system/)

-2 __xdProt client architecturel

IL-o Algorithm for communication thread)

-4 xdProt data. tormatl

-8 Overview ot Ixor architecturel

=9 IVMPL Architecturel

P-10 A user-readable stack trace for a single thread)

P-11 Ixor data tormatl

B=12 Call stackd

b-lo Levenshtemn exampld

B-14 Favor insertion/deletion costs|

B-15H Favor substitution costs|

B-16 Favor squared imsertion/deletion costs|

b-17 Favor squared edit costs)

p-1x Favor end

B=-19 Call stack tactors]

xii

11
24
25
26
28
29

31
33
48
49

55
58
59
59
60
60
61
68

A-20 bully architecturd

B-21 Sequence diagram Ior election

B-22 Sequence dlagram Ior prime number processing

B-25 dingleton faillures compared to singleton normal executions) . .

80
81
82
90

List of Algorithms

P T Txor communication thread 37
R.2Z Server main programl oo oaaa e 44
2.3 Server BACKGROUND-UDP-THREAD(Millisecond delay) 44
2.4 Server CONNECTION-THREAD(Docket s) 45
B.I Comparing all executiond 52
B.2 COMPARE(v, m): comparing VM vtom 53
B.3 EDIT-DISTANCE(z, v, strategy) (from |G6]) 516
B4 Tevenshfein distaned 57
B Favor end strafegylo 60
B.6 Favor end squared sfrategy]o 61
B.7_Favor begin strategy]o 63
B.8 Favor begin squared strategyl. 63
B.9 COMPARE-FRAMES(f, g) Comparing two stack iframes 66
B.1I0 Call stack strategy 1| 66
B.IT Call stack strategy 2 67
B.1Z2 Call stack strategy 4 67
B.13 GAP-DISTANCE(z, vy, strategy) (from |5, 6]) 7(

Xiv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Andy Podgurski, for his help in
preparing this work.

The author of CLUTO, George Karypis, was kind enough to answer several
questions.

I would like to thank my friends Ken Alverson, Brad Bower, Mike Camp,
Chris Connelly, Aaron Jack, Tim Schnabel, and Rick Wash for their ideas and
encouragement.

Without Melinda Minch’s support, encouragement, and understanding, I

would not have been able to complete this work.

XV

Using stack traces to identify failed executions in a Java
distributed system
by
John Lambert

Abstract

Observation-based testing says that given a large set of program executions,
we can use cluster analysis on the profiles to filter the executions and identify
unusual profiles. The few executions with unusual profiles can then be checked
manually for compliance, reducing the testing effort needed to reveal defects.
While observation-based testing has been successfully applied to large stand-
alone programs, it has not been applied to distributed systems.

This thesis presents Ixor, a system which collects, stores, and analyzes
stack traces in distributed Java systems. When combined with third-party
clustering software and adaptive cluster filtering, unusual executions can be
identified.

Several methods of comparing executions are presented and their effec-
tiveness in identifying failed executions is evaluated against two non-trivial
sample applications. The results suggest that this approach is highly effective

in correctly identifying failed executions.

xXvi

Chapter 1

INTRODUCTION

1.1 Overview of thesis

Distributed systems present two challenges: they can run on multiple ma-
chines in different physical locations and the introduction of network traffic and
multithreading leads to non-determinism. Software testers have tried to iden-
tify failed executions with resource-intensive solutions such as application-level
logging code, run-time instrumentation of executables, controlled lab environ-
ments, and custom execution platforms. An automated method of identifying

failed executions of a distributed system is needed.

1.1.1 Challenges

Since we are dealing with distributed systems, we must take into account two
issues.

First, by definition, a distributed system can use multiple machines in
different physical locations. Internet-wide applications such as SETI@Qhome
run on computers all over the world. Enterprise applications such as a billing

system may need to scale across multiple database and application servers.

Second, the introduction of multiple threads and network traffic leads to
non-determinism. Threads are introduced to handle multiple jobs, background
processing, or communication. (The Java RMI framework presents several in-
teresting thread issues; see B.7.) While network traffic and threads are essential
to a distributed system, they are impossible to predict: packets may take 10
millisecond or 1 second to move between computers (or never arrive at all),

and a thread may be blocked for longer than was expected by the developer.

1.1.2 Previous solutions

Several attempts have been made at identifying failed executions in distributed

systems, but all of them have drawbacks.

1.1.2.1 Application-level logging

Application-level logging is inefficient at runtime, difficult to introduce system-
wide, and difficult to manually interpret.f] Assuming access to the source code,
adding logging code to the appropriate places in a large system is non-trivial
and results in the mixing of application logic and debugging logic.i Analyzing
the logs is very difficult, as well: synthesizing n logs from m machines with
different clock times is very difficult. Furthermore, having a “Debug” build
with logging and a “Release” build without logging may expose bugs: a race
condition with a window of 10 milliseconds may never exposed if a logging call

takes 100 milliseconds.

'Tt is easy to sort multiple log files by time, but creating a coherent mental construct
based the contents is still difficult.
2 Aspect-oriented programming may be helpful here, but the analysis problem remains.

1.1.2.2 Runtime instrumentation

Runtime instrumentation of application code in order to introduce logging or
tracing is sub-optimal for several reasons. Although some instrumentation
can be done at compile time, dynamically loaded /mobile code will have to be
instrumented at run-time, with a very high cost. As above, the system is no

longer executing the same code as usual, possibly changing the outcome of an

execution. {Todo #1.0: more reasons}

1.1.2.3 Controlled environments

Using “test labs” with controlled network environments is a popular develop-
ment option but it can cause problems in the long run. Assumptions such as
the length of time it takes to deliver a packet, or the hardware in use may not
hold during deployment on a different network. Network problems are difficult

to record and reproduce.

1.1.2.4 Custom platforms

Using a custom VM to retrieve low-level information is sub-optimal: executions
take longer, it is resource intensive to create/acquire the custom VM, and it
may not port to other platforms. Furthermore, the testing platform may then

be different than the deployment platform, exposing more bugs.

1.1.3 This work

As shown above, there are two problems: getting the data about the system,
and analyzing it to draw some meaningful conclusion.

The best way to get the data is to introduce a minimal disturbance into
the system: execute the same code on the same platform at the same speed

on the same network. The best way to analyze data is automatically, without

user intervention. This work, a system called Ixor, fulfills the goals above for

Java distributed systems using RMI:
1. The Ixor client captures stack traces from participants in a system
2. The Roxi tool analyzes information from multiple executions

3. Clustering software will group executions to help identify failures

1.2 Problem definition

1.2.1 Distributed system

From a high-level, a distributed system looks like Figure [[-1. There are multi-
ple processes, with multiple threads, communicating with other processes via

messages.

1.2.2 Communication mechanisms

In order to communicate messages between processes, there are three common

levels of abstraction.

1.2.2.1 Sockets

Sockets are a flexible, general-purpose network communication mechanism.
However, the burden on the application programmer is great: the design and
implementation of an application-level client/server protocol requires a great

deal of thought and programming effort.

1.2.2.2 Remote Procedure Calls

Traditionally, an alternative to sockets is the Remote Procedure Call (RPC),
5

which will hide the communication behind a local procedure call [B5]. As

Machine B
Process B-2 @
A
Message Z
y
@@ Message Y
Message W
Machinge A
Process A-3 Process A-2 @
Message X
Machine C

Figure 1-1: Distributed system.

far as the programmer is concerned, the function is local, but in reality, the
parameters are being encoded and transferred to a remote target, which then

sends back an encoded response.

1.2.2.3 Objects

However, the RPC abstraction does not work for object systems because com-
munication between program-level objects is required [35]. In order to match
the semantics of object invocation, distributed object systems require remote
method invocation or RMI. In such systems, a local surrogate or stub object

manages the invocation on a remote object.

1.2.3 Our problem

The point of this work is to find a way of detecting defective runs of programs
in distributed systems by examining multiple executions.

We restrict the problem to Java RMI because it captures the semantics of
a distributed system very cleanly: requests are sent to remote machines via a
well-defined interface. The application logic is not hidden behind sockets: a

stub class is used, but it has specific methods.

1.2.4 Generalizability

All work presented is generalizable to other platforms and programming lan-
guages; Java was chosen for four reasons. First, the profiling interface [b6] is
well-known. Second, it is easy to create sample applications and generate exe-
cutions for it. Third, Java RMI captures the semantics of a distributed system
very cleanly compared to sockets: requests are sent to remote machines via a
well-defined interface. Fourth, the Java RMI runtime is quite easy to modify

in order to insert both tracing code and fault injection code.

1.3 Observation-based testing

{Todo #1.1: Re-write this about observation-based testing.}

(T3] describes how, with appropriate profiling, failures often have unusual
profiles that are revealed by cluster analysis; failures often form small clus-
ters or chains in sparsely-populated areas of the profile space. The estimation
of software reliability using stratified sampling is presented in [A1]. A cap-
ture/replay tool for observation-based testing of Java programs is presented
in [49].

From [25]:

The traditional paradigm for testing software is to construct
test cases that cause runtime events that are likely to reveal cer-
tain kinds of defects if they are present. Examples of such events
include: the use of program features; execution of statements,
branches, loops, functions, or other program elements; flow of data
between statements or procedures; program variables taking on
boundary values or other special values; message passing between
objects or processes; GUI events; and synchronization events.

It is generally feasible to construct test cases to induce events of
interest if the events involve a program’s external interfaces, as in
functional testing (black-box testing, specification-based testing).
However, it often extremely difficult to create tests that induce spe-
cific events internal to a program, as required in structural testing
(glass-box testing, code-based testing). For this reason functional
testing is the primary form of testing used in practice. Structural
testing, if it is employed at all, usually takes the form of assess-
ing the degree of structural coverage achieved by functional tests,

that is, the extent to which the tests induce certain internal events.

Structural coverage is assessed by profiling the executions induced
by functional tests, that is, by instrumenting or monitoring the
program under test in order to collect data about the degree of
coverage achieved. If necessary, the functional tests are augmented
in an ad hoc manner to improve structural coverage.

The difficulty of constructing test data to induce internal pro-
gram events suggests an alternative paradigm for testing software.
This form of testing, which we call observation-based testing, em-
phasizes what is relatively easy to do and de-emphasizes what is
difficult to do. It calls for first obtaining a large amount of po-
tential test data as expeditiously as possible, e.g., by constructing
functional tests, simulating usage scenarios, capturing operational
inputs, or reusing existing test suites. The potential test data is
then used to run a version of the software under test that has been
instrumented to produce execution profiles characterizing the pro-
gram’s internal events. Next, the potential test data and/or the
profiles it induces are analyzed, in order to filter the test data: se-
lect a smaller set of test data that induces events of interest or that
has other desirable properties. To enable large volumes of poten-
tial test data to be analyzed inexpensively, the analysis techniques
that are used must be fully or partially automated. Finally, the
output resulting from the selected tests is checked for conformance
to requirements. This last step typically requires manual effort —
either in checking actual output or in determining expected output.

Many forms of execution profiling can be used in observation-
based testing. For example, one may record the occurrences of any
of the kinds of program events that have traditionally been of in-

terest in testing. Typically, a profile takes the form of a vector of

event counts, although other forms, such as a call graph, may be
used in observation-based testing. Since execution profiles are of-
ten very large — ones with thousands of event counts are common
— automated help is essential for analyzing them. In structural
testing, profiles are usually summarized by computing simple cov-
erage measures, such as the number of program statements that
were executed at least once during testing. However more sophis-
ticated multivariate data analysis techniques can extract additional
information from profile data. For example, [41] and [42] report
experiments in which automatic cluster analysis of branch traversal
profiles, used together with stratified random sampling, increased
the accuracy of software reliability estimates, because it tended to
isolate failures in small clusters.

Among the most promising multivariate data analysis tech-
niques for use in observation-based testing are multivariate vi-
sualization techniques like correspondence analysis and multidi-
mensional scaling. In essence, these computer-intensive techniques
project many-dimensional execution profiles onto a two-dimensional
display, producing a scatter plot that preserves important relation-
ships between the profiles. This permits a human user to visually
observe these relationships and, with the aid of interactive tools,

to explore their significance for software testing.

A serious problem with synthetic test data is that it does not
reflect the way that the software under test will be used in the
field. Even if it reveals defects, it may not reveal those having a
significant impact on the softwares reliability as it is perceived by

users. By contrast, operational testing (beta testing, field testing)

10

does reflect the way software is used in the field, and it also may
reduce the amount of inhouse testing (alpha testing) software de-
velopers must do. In operational testing, the software to be tested
is provided to some of its intended users to employ as they see fit
over an extended period. The advantages of operational testing are
somewhat offset by the fact that beta users often fail to observe
or report failures, because they are unfamiliar with the softwares
specification and because testing is not their primary occupation.
This problem can be addressed by using a capture/replay tool to
capture executions in the field, so they can later be replayed and
examined in detail by trained testing personnel. If many execu-
tions are captured, it may be practical to examine only a fraction
of them in this way. Rather than examining a random sample
of executions, it is desirable to filter the captured sample to iden-
tify executions with unusual characteristics that may be associated
with failure. Multivariate visualizations can be used to filter oper-
ational executions in much the same way they can be used to filter

regression test suites.

1.4 xdProf

Earlier work on an independent study project called xdProf, published in [21],
was the basis for some parts of the implementation. xdProf was a basic frame-

work for implementing the system described in this thesis.

1.4.1 Overview of xdProf

We describe the design and implementation of xdProf: a tool that captures

and analyzes stack traces sent at a fixed interval from Java Virtual Machines

11

Java Virtual Machine Process

’ |
I Application
I I
| Java Libraries I
I I
| J Events _ |
\Y xdProf Data
I Java Virtual Machine M xdf’rof I—>
I p Client I
| < Control
I I
\ I
~— e e o e o e

Figure 1-2: xdProf client architecture.

in a distributed system. The xdProf client uses the Java Virtual Machine Pro-
filing Interface and works with any compliant implementation; no access to
application source code is necessary, no library modifications are needed, and
there is no run-time instrumentation of Java byte code. Configuration options
given at virtual machine startup specify the interval for stack trace transmis-
sion and the remote xdProf server. The xdProf server collects information
from multiple xdProf clients and provides an extensible interface for analysis.
Current tools include a graphical user interface for viewing the most recent
stack traces from multiple virtual machines and the generation of control flow
graphs for each virtual machine. The performance impact of the xdProf client
sending data over a local area network is minimal: less than a 8% increase in

total elapsed time for a set of standard benchmarks.

12

1.4.2 xdProf client

The xdProf client runs on a Java Virtual Machine (JVM) and sends stack
traces to a remote machine at fixed interval. It is a small dynamic link library
(xdProf .d11 or libxdprof .so) which can be used with the IBM Java Devel-
opment Kit 1.3 and the Sun Java Development Kit 1.2 and 1.3; it is currently
available on the Intel/Win32 platform, Intel/Linux, and Ultra/Solaris plat-
forms. The xdProf client is invoked with the ~-Xrun command-line option: java
-XrunxdProf : server=machine_name, port=port_number,refresh=milliseconds
ApplicationToRun

The Java applet viewer (appletviewer) and Remote Method Invocation Reg-
istry (rmiregistry) can use the xdProf client when the -J-XrunxdProf: . ..
command-line argument is used. Also, on some Java Virtual Machines, the
environment variable _JAVA_OPTIONS can be set to the -XrunxdProf:... ar-
gument so all programs running on the Java virtual machine will automatically

use the xdProf client.

1.4.2.1 Java Virtual Machine Profiling Interface

The xdProf client uses the Java Virtual Machine Profiling Interface (JVMPI),
which was proposed as a “general-purpose and portable mechanism for ob-
taining comprehensive profiling data from the Java virtual machine...it is
extensible, non-intrusive, and powerful enough to suit the needs of different
profilers and virtual machine implementations.” [66] Currently, both IBM and
Sun support the JVMPI specification on various platforms: Windows, Linux,
Solaris, Macintosh OS X, etc. The JVMPI eliminates the need for an in-
strumented Java Virtual Machine, and allows one profiler to work with many
different virtual machines. In the current version of the JVMPI, only one pro-

filer agent per virtual machine can be supported. The JVMPI sends events to

13

a profiler that has registered its interest in specific events via JVM callbacks.
xdProf uses seven of these events, listed in Table [L1. The details for each
event are available in [h3].

xdProf will store or remove information about the thread or class upon
receiving the appropriate JVMPI event. Once the JVM initialization done
event is received, xdProf will create a background thread, described in [.4.2.2,
to communicate with the xdProf server and notify this thread when the JVM
shutdown event is received.

xdProf also enables the object allocation event for a short period of time.
The JVM initialization thread will allocate objects before a thread start event
has been sent for it. xdProf uses the object allocation event to discover this
thread, and request a thread start event for it via the JVMPI. After xdProf
has retrieved all applicable information about the thread, the object allocation

event will be disabled, increasing performance.

1.4.2.2 Communication Thread

Once xdProf has been notified that the JVM is initialized, xdProf starts a
background communication thread (Figure [[-3). This thread initializes com-
munications by attempting to connect to the xdProf server; if it cannot connect
to the server specified in the command-line arguments, it will disable all fu-
ture event notification, effectively unloading xdProf. Every delay milliseconds,
xdProf will disable garbage collection and suspend all threads in the system:;
both these steps are necessary: garbage collection must be disabled so it does
not start while call stacks are being accessed and running threads must be
suspended so they do not change their call stacks while information is being
collected. Information about the threads, methods, and classes is stored in the
data format presented in [[.4.2.3. Suspended threads are resumed and the in-

formation is transmitted. Once xdProf has been notified that there is a virtual

14

machine shutdown pending, the communication thread will close its socket to
the server.

This “sampling” algorithm is based on the statistical CPU sampling algo-
rithm used by the HPROF profiler [56], except that xdProf does not attempt
to calculate or assign costs to the contents of the call stack. Like HPROF, this
algorithm is independent of the number of processors and should work equally

well on single processor and multiprocessor machines.

1.4.2.3 xdProf Data Format

The xdProf client sends plain-text ASCII data to the machine specified via
command-line arguments. The data format, shown in Figure [-4, is stateless:
any information necessary to determine what is running in the VM is sent
with the data; no history is assumed. Thread, class, and method identifiers are
acquired from the JVMPI events indicating their creation, and are transmitted
as eight-digit hexadecimal numbers.

The thread name, group name, and parent name are the values returned
by the JVMPI when the thread event was received; changes at runtime (via
java.lang.Thread.setName) are not visible. The logical start specified for
each thread is a monotonically increasing integer corresponding to the order in
which threads were started: the first thread started is assigned 1, the second
thread is assigned 2, etc. Threads are sent in no particular order; however,
the logical start value provides a way to order them by starting time and to
determine a possible parent relationship (the child’s parent name is the same
as the possible parent’s name, and the parent’s logical start value is less than
the child’s logical start value). A gap in the sequence of logical start values
indicates that the missing thread has terminated. Thread status is an integer
indicating if the thread is runnable, waiting on a monitor, or waiting on a

condition variable; if a thread is interrupted or suspended in any of these

15

three states, a flag bit will be set.

After sending information about a thread, xdProf sends the number of
frames in the call stack, and then the content of the call stack as a list of stack
frames. Each stack frame consists of a method identifier and a line number.
Line numbers will reference a line in the class source file or indicate a compiled
method, a native method, or an unknown line number. The top of the call
stack, the method currently executing, is sent first; the thread entry point is
sent last.

After the number of methods is sent, xdProf will send the class identifier,
method identifier, method name, and a method descriptorf] for each method,
in no particular order. To reduce network traffic, xdProf sends method infor-
mation only for those methods that currently appear in the call stack. Class
information is sent last and, to reduce network traffic, only classes with one or
more methods in the call stack are sent. Inner and anonymous classes are sent
with names as they are internally represented: package.name.Outer$Inner,
SomeClass$1, etc. The xdProf client does not use all information accessible for
classes: for example, names and data types of static fields and instance fields
are omitted because transmitting this information would require significantly

more network traffic.

1.4.2.4 Performance

The xdProf client introduces two distinct kinds of overhead with respect to
application execution time. First, xdProf must process certain events which
happen mainly near the beginning of a program’s execution: loading of classes
(such as the Java library classes), the starting of threads, and the completion

of VM initialization. The second source of overhead is that xdProf must stop

3The method descriptor describes the data types of the parameters and return data type
in a concise format: “Object mymethod(int i, double d, Thread t)” has the method
descriptor “(IDLjava/lang/Thread;)Ljava/lang/0Object;” [21].

16

every running thread every delay milliseconds, generate a call stack, look up

applicable information, and send the data to the server.

SPECjvm98 We used the SPECjvm98 benchmark[47] to evaluate the effect
of the xdProf client. The SPECjvm98 is a standard measure of the performance
of a Java virtual machine and the underlying hardware. Several different tests
are run and the elapsed time for each test is used to calculate a SPEC ratio
with respect to a reference system. The SPECjvm98 and SPECjvm98_base
metrics are the geometric means of the best and worst ratios for each test,
weighted equally. Benchmarking is performed inside a web browser or Java
applet viewer: the system under test will download the test classes from a
remote web server and run them.

Table [A-T3 contains the SPECjvm98 and SPECjvm98_base results for the
Sun Java 2 Runtime Environment 1.3 with HotSpot Client VM; we used an
Intel Pentium IT 350 MHz computer with 512 MB of RAM running Windows
2000 Professional for our testing.fl xdProf was either not used at all, used to
send data to the local machine every 100 milliseconds, or used to send data
to a remote machine (different from the web server) every 100 milliseconds.
Since we were interested in the performance effect of the client, we used a
native code program [46] to receive data from the client, but did not process
or analyze the data.

The SPECjvm98 value without xdProf is between 2.8% and 5.8% higher
than with xdProf; the SPECjvm98_base value is 1.6% higher if xdProf sends
data locally instead of not sending data, and not sending data at all is 5.2%
faster than sending data remotely. However, since the SPECjvm98 benchmark
runs as an applet and measures the elapsed time for test execution, it does

not factor the time for Java VM initialization and shutdown.

4The test ratios used to determine these values and the complete system environment
are listed in @

17

Total elapsed time To measure the overall effect of xdProf, we measured
the total elapsed time from JVM start to JVM shutdown of an application that
ran each SPECjvm98 test exactly twice; this includes the “up-front” overhead
such as loading library classes, etc. We tested against Sun’s HotSpot Client
and Classic (no just-in-time compilation; all byte code is interpreted) virtual
machines and no changes were made to default garbage collection behavior.
Table [A.T4 shows that the overhead of xdProf on the HotSpot VM is be-
tween 1.93% and 7.76%, and that, as the delay between messages increases, the
overhead generally decreases. Table [A.T] is interesting because the overhead
of xdProf sending information locally is significantly higher than the overhead
to send data remotely. We believe that this is because more context switches
are required for the Classic VM to send and receive data locally but more in-
vestigation is necessary. Preliminary performance measurements on the IBM

1.3 Classic VM are consistent with the Sun Classic VM performance results.

Network traffic As shown in [Al, xdProf sends approximately 4300 bytes
per stack trace with the Classic VM and 2800 bytes per stack trace with
the HotSpot VM, excluding TCP/IP transmission overhead. Network traffic
is highly-application dependent: Sun’s Forte for Java, Community Edition
version 1.0[62] sent approximately 7100 bytes per trace when the Classic VM
was used, and around 4300 bytes per trace when the HotSpot VM was used.
The difference is due to the fact that the HotSpot VM will only report call
stacks for threads that are not blocked so fewer stack frames, classes, and
methods are sent. Overall, the Classic VM generated 50% more network traffic
per stack trace. However, since execution of the elapsed time benchmarks took
longer under the Classic VM, more stack traces were sent, and the Classic VM
generated a total of fourteen to sixteen times the network traffic of the HotSpot

VM.

18

1.4.3 xdProf server

The xdProf server receives and analyzes information from multiple xdProf
clients. It supports the use of multiple analysis tools, which can be added or
removed at runtime. The xdProf server and analysis tools are written in Java;
it would be possible to write equivalent server programs in other languages or
to use Java Remote Method Invocation to off-load analysis to another, more

powerful machine.

1.4.3.1 Interfaces

Each analysis tool in the xdProf server is notified when an event happens: an
xdProf client connects to the xdProf Server, a trace is received for a connec-
tion, or a client disconnects from the server. There are three functions in the
ServerListener interface, listed in Table [L4. A Connection object stores
information about the client; a Trace object contains information about the
classes, methods, and threads loaded, as well as a time stamp. The same anal-
ysis object is used for all connections; this allows the tool to examine global

patterns.

1.4.3.2 Analysis Tools

We will describe two analysis tools that currently exist; they are written in

Java and can be run simultaneously or separately.

GUI tool The GUI tool in Figure [=G displays the xdProf clients currently
connected to the server, the threads running in a selected client, and the stack
trace of a selected thread. There is a Pause button than will “lock” the GUI
and allow the user to examine the stack traces of all the virtual machines
at a specific point in time. (Since traces are received in any order and after

different delays, this is not a global state.) After the user is done examining

19

the system, clicking the Pause button again will update the display with the

most recent information.

Call graph generator We also wrote a call graph generator for xdProf,
the output of which is shown in Figure [[=7. This tool generates files for the
dotty graph visualization program[36]; it is highly configurable and has a GUI

front-end.

1.5 Related work

1.5.1 Debugging

(@] presents a framework for distributed debugging. [b5] presents a new mecha-
nism based on execution tracing and cryptography that allows a mobile agent
owner to determine if some site in the route followed by the agent tried to
tamper with the agent state or code. Issues in debugging optimized code are
discussed in [9].f] Mapping between source code and optimized code (the “code
location problem”) is discussed in [564]. [8] discusses how to produce an accu-
rate call stack trace if frame pointers are occasionally absent. [62] shows how

to integrate event visualization with sequential debugging.

1.5.2 Visualization

Some related work is from the visualization community. Walker in [58] de-
scribes “Visualizing Dynamic Software System Information through High-level
Models.” Earlier work by De Pauw, in [61], focused solely on object-oriented
systems. [60] describes the visualization of concurrent and object-oriented sys-

tems, as well. A methodology for building application-specific visualizations of

5Sun’s Java does not use an optimizing compiler, so this is not an issue for this work.

20

parallel programs is presented in [48]. A popular tool for visualization, and one
used by [21], is presented in [36]. [IR] talks about visualizing message patterns
in object-oriented program executions. An overview of using visualization for

debugging, including the use of sound, is in [2].

1.5.3 Java-related

Specifically related to Java client /server applications, [20] described how a cus-
tom, instrumented Java VM could be used to profile and trace events through-
out a system, with an emphasis on performance monitoring. In it, the authors
mentioned how JVMPI [66, b3], used in Ixor, might be used in the future
to avoid the complex instrumentation required. Just-in-time compilation is

discussed in [I2].

1.5.4 Software engineering

From a program-understanding viewpoint, [28] describes how to use automatic
clustering to produce high-level system organizations of source code. Under-
standing distributed software via component module classification is discussed
in [33]. In [8Y], Walker describes the efficient mapping of software system
traces to architectural views. A debugging and testing tool for supporting

software evolution is presented in [1].

1.5.5 Sequences, patterns, and trees

[38] describes a numerical similarity /dissimilarity measurement for trees. [3Y]
studies the problem of estimating a word by processing a noisy version which
contains substitution, insertion, deletion and generalized transposition errors;
this occurrs when transposed characters are themselves subsequently substi-

tuted, as is typical in cursive and typewritten script, in molecular biology and

21

in noisy chain-coded boundaries.
[6] describes two popular algorithms for sequence comparison: edit dis-
tance and gap distance, both used in Roxi. An influential paper on sequence

matching and the basis for one of the algorithms used in Roxi was [26].

1.5.6 Distributed systems

An general overview of distributed systems is in [I0]. An overview of virtual
time and global state algorithms is given in [31]. The “Holy Grail” of detecting
causal relationships in distributed computations is discussed in [44]. The use
of Markov Nets and the benefits of using probabilistic models for distributed
and concurrent systems is discussed in [3]. [82] gives a method of profiling
paths across processes.

Finding consistent global checkpoints of a distributed computation is im-
portant for analyzing, testing, or verifying properties of these computations;
[29] gives a theoretical foundation for finding consistent global checkpoints.

Distributed systems depend on consistent global snapshots for process re-
covery and garbage collection activity; [b1] provides exact conditions for an
arbitrary checkpoint based on independent dependency tracking within clus-
ters of nodes.

A general functional model of monitoring in terms of generation, process-

ing, distribution and presentation of information is shown in [30].

1.6 Trademarks

Java and HotSpot are trademarks of Sun Microsystems, Inc. Microsoft Visual
C++ 7.0 is a trademark of Microsoft. All trademarks are property of their

respective owners.

22

1.7 Organization

Chapter P gives the design of the components in Ixor. Chapter B discusses
the algorithms used to analyze the data. Chapter] presents two case study
applications and the results of executing Ixor on this system and its execu-
tions. Chapter f presents conclusions and ideas for future work. Appendix [A]

contains information on the performance overhead of xdProf.

23

ISYIJUOPT PRAIY) ‘IOYIJUIPI SSR[D ‘IoYIIuapt 109[q ()

pojesorre st 1oolqo uy

Q0TIV 1LDArdo

QUON uMop SurInys st JNA | NMOQ LOAHS WAL
QUON ouOp ST uonyezifenyiur N A | ANOT LINI WAL
IOUTIUIPI sse[) | INA 92 Ul papeorun st sse[d | aV0INA SSVTID
sse[o oY)
UL SPOT3OU ‘O[lf 90INO0S “ISYIJUOPI PUR dWRU SSB[)) TNA 23 Ul popeo] St sse[d dvoT SSVID
IQYIJULPI PRIy], NA °U) Ul Spud peaIyl y ANd dVI¥HL

IogHuept
peoaryy ‘oureu juored pue dnois ‘owreu peayJ,

INA O3 Ul PolIR)S SI PRI} Y

JHVLS AVAYHL

Joiqpx Aq pesn uorjyeuriojul

uorjdraosa(g

oure N JUIAT]

‘JoIdpx %@ posnt sjuaA9 TJINAL T°'T °2l9%l,

24

"PrOIY) UOIJROIUNUINIOD 0] WYILIOF[Y :£-T 9INSL

IOAISS JOIJPX oyl WOIJI 1D8UUOISTI(]
JI9AISS ©30WSI 03 UOTIRWIOJUT PUSS
UOT100TT0O o3eqred eTqeud
Joxdpx Kq pepuedsns eIeM 1BU] SpesIyl oYUl OWNSSY
SOSSeTD puUeR ‘SpoyleuW ‘S¥OoeAQS T[eD pPeeIyl oYl 1NOoge UOTIRWIOIUT JI8YJle:
SUTYORW TeNn3ITA oYl UT speslyl Juruuni TTe pusdsng
UOT108TT00 o8eqied oTqesi(
I03TUOW TJWAL © Sutsn fivjop petryroads-Iosn oyl 3Tepy
Sutpued umopanys e q0uU ST 8I8Y1 STTUM
peelyl STY]1 pUS pue SquUeA® [t OTQeSTIP ‘10U JT ‘ISAISS 071 108UUOY)

25

"JRULIOJ RIRD JOIJPX -] 9INSIq

<®TTJ ©0INOS) SSBID> <OWRU /) SSBIO> <ISTFTJUSOPT) SSBTO>

<O®TTJ ©0INOS] SSBID> <OWRU | SSBIO> <ISTFTJUSOPT] SSBIO>

<SOSSBTD JO J9quUMU :H>
<xoqdtaosep
W POUleW> <OWRU || POYIOW> <ISTFTIUSPT || POUILW> <ISTFTIUSPT SSBIO || Poylow>

<xoqdtaosep

1 POU3loW> <dWRU | POYISW> <ISTITIUSPT T POYIOUW> <ISTFTIUSPT SSBID] POYIoUW>
<Spoylew JO JIoqumnu :[>

©$3207Q PDILY] 4BYJO0 """

<IsqUNU SUTT | SWeI > <ISTFTIUSPT POYISOW | SUWeII>

<IequMU SUIT [- J SWeIJ> <ISTITIUSPT poylew T

- J ewely>

<I9qUMU SUIT J SWeIJ> <ISTITIUSPT poyiew jJ oweIy>
<] pesiyl IOJ seweIy JO IaquUNU :J>

<snaeas
<3Ieas TeoT80T
<oweu jusxed
<oureu dnoix3
<oueu
<ISTFTIULPT

T

pesaIyl>
pesaIya>
pesIyl>
peaIya>
pesIyl>
pesIya>

<speaiyl JO Ioqumu :[N>
<uotarewmroJUT weisAs Surqexsdo pue ‘LWIAUNI ‘SUTIYIRW TRNIITA>

<u0TadIIOSOp SUIT-PURBWUOD> <PT ssedoxd KA>

26

Java VM 1

Java VM 2

Java VM N

xdProf Client

xdProf Client

xdProf Client

xdProf Server

A

Analysis tool 1

Analysis tool 2

Analysis tool N

Figure 1-5: xdProf server architecture.

27

"$109UUOISIP UOIFIUUOL) © UM PI[[R))

{ (9 UOT3D59UUOY)UOTIDdUUOYSAOWSI PToA OTTqnd

"UOI309UUO0)) € I0] POAT9IAL ST 90®I} © UM DI[e))

{(2 oo®I] ‘O UOT3DOUUO))OORIIPPE proa STTqnd

"SOALLIR UOI}00UUO,) MOU B USYM 90UO PO[[R))

{ (o uoT3o8UUO))UOTIDOUUOYPPE pToa STTqnd

90BJIOJUI [00} SISATRUR JOIJPX :g'T 9[qRL

28

xdProf Server

PID | Description | Address VM oS Port_|
1489 [none motherboard/129.22.244.57 | HotSpot (TM) Client VM 1.3.0.02 interpreted mode, Sun | Sun0S 5.8 sparc 1337
1708 | forte electronic/129.22.251.240 | Classic VM 1.3.0-C native threads, nojit, Sun Windows 2000 5.00 z86 1337
[Order T ID [Name [Parent | Group | #frames | Status]
2 06A840B8 Signal dispatcher none system 0 Runnable
3 06AB6AA8 Reference Handler none system 3 Condition Variable Wait
4 06A8A860 Finalizer none system 4 Condition Variable Wait
5 002348F8 Main system | main 24 | Runnable
6 06AF5108 DPROF Background Thread none system 0 Runnable
7 07433F48 AWT-EventQueue-Q system main 6 Condition Variable Wait
8 07432D00 SunToolkit.PostEventQueue-0 system main 3 Condition Variable Wait
9 07434410 AWT Windows system main 3 Runnable
11 0C12CFFO OpenIDE Request Processor—0 null system 2 | Condition Variable Wait
[[Method Class Line_|
int indexOf (int, int) ava.lang.String 1195
void <init>(java.net.URL, java.lang.String, java.net.URLStream... ava.net.URL 485
void <init>(java.net.URL, java.lang.String) ava.net.URL 376
sun.misc.Resource getResource(java.lang.String, boolean) sun.misc.URLClassPath$JarLoader 510
sun.misc.Resource getResource(java.lang.String, boolean) sun.misc.URLClassPath 132
java.lang.0Object run() ava.net.URLClassLoader$l 192
ava.lang.0Object doPrivileged(java.security.PrivilegedExceptio... | java.security.AccessController Native
ava.lang.Class findClass(java.lang.String) ava.net.URLClassLoader 188
java.lang.Class loadClass(java.lang.String, boolean) ava.lang.ClassLoader 297
java.lang.Class loadClass(java.lang.String, boolean) sun.misc.Launcher$AppClassLoader 286
ava.lang.Class loadClass(java.lang.String) java.lang.ClassLoader 253
java.lang.Class loadClassInternal(java.lang.String) java.lang.ClassLoader 313
void initialize() org-openide.util.actions.CookieAction 73
void initialize() org.netbeans.modules.text.ConvertToTextAction 34
java.util.Map getMap(org.openide.util.SharedClassObject) org.openide.util.SharedClassObject$DataEntry 396
java.lang.Object getProperty(java.lang.Object) org.openide.util.SharedClassObject 181
void addPropertyChangeListener (java.beans.PropertyChangeListen... | org.openide.util.SharedClassObject 205
void add(org.openide.modules.ManifestSection$ActionSection) org.netbeans. core.ModuleActions 117
void processAction(org.openide.modules.NanifestSectiongActionS... | org.netbeans.core.Nodulelten$Installlterator 528
void invokelterator(org.openide.modules.NanifestSection$lterator) | org.openide.modules.ManifestSection$ActionSection 235
void forEachSection(org.openide.modules.NanifestSection$lterat... | org.openide.modules.ModuleDescription 324
void restoreSection() org.netbeans.core.ModuleItem 333

Pause

Figure 1-6: GUI tool.

29

java.lang.Thread
void run()
42 times 21 times 58 times
ax.swing.TimerQueue sun.awt.windows.WFileDialogPeer$1 sun.awt.windows.WToolkit
void run() void run() void run()

21 times 57 times
sun.awt.windows.WFileDialogPeer sun.awt.windows. WTool

void access$000(sun.awt.windows.WFileDialogPeer) void eventLoop()

21 times

java.awt.EventDispatchThread
void run()

sun.awt.windows.WFileDialogPeer
void _show()

{R tima:

Figure 1-7: Call graph generator output (detail).

Chapter 2

SOFTWARE DESIGN

Overview

This chapter describes the design and implementation of Ixor. Figure P-§

shows an overview of the Ixor system. There are three main components in

the system:
e Ixor client collects stack traces (B.1])
e Ixor server requests stack traces (£.2)

e Roxi analyzes the data from the server (2.3)

2.1 Ixor Client

The Ixor client is a dynamic link library (ixor.d11) that uses the Java Virtual
Machine Profiling Interface. It is a native binary for the Windows 32-bit

platform written using Visual C++ 7.0.

30

31

"9INJIDYTDIR IOXT JO MIIAIOA() :R-7 OINSJI

(s1sAjeuy Jox|) 1xoy

N 8J%kel] uollndax3y

) @del] uolindaxy

A 4

JOAIDS JOX|

A

A

aoel} Y @ 90El}
174 IdINAF 10X] > eo T7A IdNAr J0X] - &> o 1A IdNAP 10X] <> e
aulyoe|\ [BNUIA BABL aulyoe|\ [ENHIA BABL auIyoe|\ [ENHIA BABP
aoel aoel} 8%el}
S8sse|D [NY J0X| >INy S8SSE|D |NY JOX| > |y S8SSE|D INY JOX| [« |1y
Aeliqiq sse|D eaep Kieiqiq sse|D eaer Aleiqiq sse|p eaep
N uoneoiddy Jasn Z uoneoiddy Jasn | uoneoiddy Jasn

T
1
1
1
1

B SIIBD N -~ SIIRD [N |

32

2.1.1 Invocation

Ixor is invoked at runtime by loading the Ixor DLL with
-Xrunixor:hostname=H,description=Desc,logfile=path/Filename. log

The hostname H is the hostname of the remote Ixor server. If it is not
specified, then it will default to localhost. The description is a required
description of the VM in use: Clientl, Server, etc. The logfile parameter
is a file where the call stack traces will be stored; it can be a network location
or the same directory.

Since this is inconvenient for the user, there is a script file which contains a
predefined hostname and will set the parameters based off the VM description
and a random number:

T:\example>ixor MyDescription com.example.ClassToRun
-Dcom.example.option=Sample Argumentl

will expand to

java -Xrunixor:hostname=electronic,description=MyDescription,
logfile=T:/example/MyDescription31337.1log
com.example.ClassToRun

-Dcom.example.option=Sample Argumentl

It is possible to use Ixor with “native” Java applications like the Java
applet viewer and Remote Method Invocation Registry if all arguments are

prefixed with a -J.

2.1.2 Java Virtual Machine Profiling Interface

The Ixor client uses the Java Virtual Machine Profiling Interface (JVMPI),
which was proposed in [66] as a “general-purpose and portable mechanism for

obtaining comprehensive profiling data from the Java virtual machine. .. it is

33

Application
Java Libraries

Events | Data
Ixor
Client

Control Requests

Java Virtual Machine

— <<

-

Java Virtual Machine Process

Figure 2-9: JVMPI Architecture.

extensible, non-intrusive, and powerful enough to suit the needs of different
profilers and virtual machine implementations.”

Currently, both IBM and Sun support the JVMPI specification on vari-
ous platforms: Windows, Linux, Solaris, Macintosh OS X, etc. The JVMPI
eliminates the need for an instrumented JVM, and allows one profiler to work
with many different virtual machines. In the current version of the JVMPI,
only one profiler agent per virtual machine can be supported. JVMPI does
not define a wire format of any kind: the profiler is allowed to use any kind of
communication.

As shown in Figure -9, JVMPI sends events to a profiler that has registered
its interest in specific events via JVM callbacks. The profiler can send control
messages to JVMPI at any time. Ixor receives requests and sends data from
the Ixor server.

Ixor uses six of the JVMPI notification events, shown in Table E.3. The
details for each event are available in [b3]. Ixor will store or remove in-
formation about the thread or class upon receiving the appropriate JVMPI
event. Once the VM initialization done event is received, Ixor will cre-

ate a background thread, described in E.1.3, to communicate with the Ixor

34

Table 2.3: JVMPI events used by Ixor

Event Name | Description Information used by Ixor

THREAD_START | A thread is started Thread name, group and parent
name, thread identifier

THREAD_END A thread ends Thread identifier

CLASS_LOAD A class is loaded Class name and identifier, source
file, methods in the class

CLASS_UNLOAD | A class is unloaded Class identifier

JVM_INIT DONE | VM initialization is done | None

JVM_SHUT DOWN | VM is shutting down None

server and notify this thread when the JVM shutdown event is received.

2.1.3 Communication thread

Once Ixor has been notified that the JVM is initialized, Ixor starts a back-
ground communication thread (Algorithm P.1. The general execution of this
thread proceeds as follows, with line numbers in parentheses referring to Al-
gorithm B.1I:

A

Create a TCP connection T to the server. (line [l))

Send the UDP port number u that the client will listen on. (lines P -)

Start listening on u for a requested packet. (line [)

While there isn’t a shutdown requested: (line f)

— Wait for a packet on u (line)

'Podgurski comment: Why use both protocols?

35

Extract the packet number p from the UDP packet (line)

Wait until all currently running events are complete (line [f)

Disable garbage collection (line R)

Suspend all other running threads in the virtual machine (lines fJ —
i)

— Record the high-resolution counter value v (line [2) [

— Gather information about the call stacks, methods, and classes
(lines I3 - [[7)

— Resume all threads (lines [§ — [[9)

— Enable garbage collection (line P0)

— Save system information, counter value v, packet number p, and

information to log file (lines 1 — 24)

e Send the log file name to the server via TCP if it has not been sent

(line 29)

2.1.3.1 Details of algorithm

Three things bear discussion.

TCP and UDP First, we use both TCP and UDP for communication. A
TCP connection is used for initial setup and transferring the location of the log
file name; obviously, this must be reliable, so TCP is the appropriate choice.
However, transferring the packet numbers (requesting a stack trace) is done
via UDP. The reason is simple: it is better to lose a packet (using the method

described in R.1.3.2) than to receive/process every packet inaccurately.

2Podgurski comment: How is this implemented?
3Podgurski comment: Where is this defined?

36

Synchronization Second, JVMPI events can arrive on any thread, at any
time. To prevent two threads from simultaneously modifying global data, the
JVMPI event processing function will enter a critical section CS; as discussed
in 2.1.4.7, when processing begins, and will exit the critical section when pro-
cessing is complete. The server must enter the same critical section CS in

order to make sure the data is in a consistent state.

High-resolution counter Third, the high-resolution counter is a 64-bit in-
teger, obtained from the QueryPerformanceCounter Win32 API. The reso-
lution of the timer is found by calling QueryPerformanceFrequency, which
returns the number of times the high-resolution timer increments itself every
second. On an Athlon XP 18004, this value is 3,579,545, giving a resolution
of 2.79e-7 seconds. However, the actual value returned is irrelevant: the thing
that matters is that it always increases between calls on a specific virtual
machine.

il

The communication thread initializes communications by attempting to
connect to the Ixor server; if it cannot connect to the server specified in the
command-line arguments, it will disable all future event notification, effectively
unloading Ixor. Ixor creates a TCP connection to the server and sends a
UDP port number to the server to indicate where the client will be listening
for requests.

When a UDP packet is received from the server, Ixor will wait until all
currently executing events are complete: threads may be modifying the class
lookup table or the list of threads. Ixor will disable garbage collection and
suspend all threads in the system. Both these steps are necessary: garbage

collection must be disabled so it does not start while call stacks are being

“Podgurski comment: ?? — [[§

37

Algorithm 2.1 Ixor communication thread

1: T «— TCP-CONNECTION(ServerName, ServerPort)
2: u «— port for UDP communication

3: SEND(T, u) // Send the value u to the server

4: LISTEN(u)

5: while not SHUTDOWN-REQUESTED?() do

10:
11:
12:
13:
14:

15:

16:
17:

18:
19:
20:
21:

22:

23:
24

p < EXTRACT-VALUE(READ-INTEGER(u))
WAIT-FOR-RUNNING-JVMPI-EVENTS-T0O-COMPLETE()
Di1SABLE-GARBAGE-COLLECTION()
Suspended — {}
for all Thread ¢ € RUNNING-THREADS() do
SUSPEND(t), Suspended «— Suspended U {t}

v < GET-HIGH-RESOLUTION-COUNTER()
StackFrames <« GET-CALL-STACKS(ALL-THREADS())

// Now that we have the method identifiers, we find the method
details for methods we haven’t already stored
MethodsToRecord «— GET-METHODS(StackFrames) — RecordedMeth-
ods

// Locate the class details for the methods we're going to store
ClassesToRecord «— GET-CLASSES(MethodsToRecord) — Recorded-
Classes
for all Thread t € Suspended do

RESUME(¢)

ENABLE-GARBAGE-COLLECTION()
WRITE(LogFile, v, p, StackFrames, MethodsToRecord, Classes-
ToRecord)

// Save the fact that we’ve used the methods and classes, so we
don’t save them again
RecordedMethods «— RecordedMethods U MethodsToRecord
RecordedClasses < RecordedClasses U ClassesToRecord

25: SEND(T, NAME(LogF'ile))

38

accessed and running threads must be suspended so they do not change their
call stacks while information is being collected.

Ixor stores more information than the user-readable stack trace in Figure
P-10; information about the threads, methods, and classes is stored in the data
format presented in E.1.3.

After all information has been stored, suspended threads are resumed,
garbage collection is enabled, the information is transmitted, and the client
then waits for another UDP packet. Once Ixor has been notified that there
is a VM shutdown pending, the communication thread will close its socket to

the server.

2.1.3.2 Dropping packets

To achieve a reasonable degree of accuracy, Ixor must not “get behind” on
requests from the server. If we queue requests, the time when they are pro-
cessed will diverge further and further from the time they should have been
processed. By setting the SO_RCVBUF option on the UDP socket U to 1, we
avoid building a queue by dropping packets.

Ixor will ignore packets with a lower number than the most recently re-
ceived packet. This is necessary because we are using UDP: packets could

arrive as 9, 11, 10.

2.1.3.3 UDP Port selection

The client must choose a UDP port number to use at run time and send it to
the server. Hardcoding would not work because two VMs on the same machine
would attempt to the use same UDP port. To get around this issue, a port
number is generated by adding a fixed offset to the current process ID. Now,

two VMs on the machine will have different port numbers.

39

2.1.4 Implications of approach

There are several implications of using JVMPI in Ixor.

2.1.4.1 Synchronization

Since JVMPI is cross-platform, it provides a method of synchronization in the
form of “raw monitors” [63]. A raw monitor is similar to a Java monitor, except
that it is not associated with a Java object. It is represented internally with an
opaque pointer and has an associated string name. These monitors support
the standard operations: Create, Enter, Exit, Wait (with specific timeout),
NotifyAll (all waiting threads), and Destroy.

However, JVMPI monitors are unsuitable in Ixor for two reasons. First,
they provide unnecessary semantics: Ixor does not need NotifyAll or a Wait
with timeout for the most time-critical sections of code. Second, JVMPI must
go through the Java Virtual Machine in order to perform the synchronization
operation. Therefore, Ixor uses Win32-specific Critical Sections. These Crit-
ical Sections are fast: they execute mostly in user-space and are just above
the operating system level. They provide enough functionality and avoid the

indirection of going through the Java Virtual Machine.

2.1.4.2 Virtual machine choice

While JVMPI is widely supported, the amount of information available to the
profiling agent is dependent on the virtual machine implementation.

The default JVM for the Sun Java 2 Runtime Environment, Standard Edi-
tion 1.3.1 is the HotSpot Client VM. The HotSpot VM is an “adaptive opti-
mizer” which will perform various optimizations at run-time: method inlining,
loop unrolling, and just-in-time compilation to native code [16]. The HotSpot

VM supports the events given in Table P.3 but, as a side-effect of method

40

inlining and JIT compilation, does not return full stack traces. In addition, it

can only return stack traces for threads which are currently running.

2.1.4.3 Class file information

Class files can contain extended information such as the line numbers for
methods and the source code file they were compiled from. However, use
of the -g:none flag during compilation prevents this information from being
included. In some situations, most notably low-bandwidth connections, omit-
ting this information is preferable, but use of code such as this with Ixor will
result in decreased information for analysis. Regardless, Ixor will provide as
much information as possible.

A related issue is the use of bytecode optimizers/obfuscators such as [43].
These tools will rename and reorder classes, methods, and method bodies so
they cannot be reverse-engineered as easily. For example, this code

class Sample

{

class Inner { /*...x/ }

public Inner calcInt(int i) { /* ... */ }

public Inner displayString(String s) { /* ... */ }
}

when compiled could be transformed via a bytecode optimizer to a class

file similar to the results of compiling

class A

{
class a { /x ... %/ }
public a b(String s) { /* ... x/ }
public a b(int i) { /x ... %/ %}

}

While increased speed and decreased size are usually beneficial, this ar-
rangement provides less information to Ixor and is not recommended. (See

B.4.3.1] for more on how this could be misleading to Ixor.)

41

2.1.4.4 Class loading considerations

In Java, users can create custom classloaders which load class files from lo-
cations other than disk. For example, an applet in a web browser uses a
URL classloader to download code from a website. Ixor works with custom
classloaders; no modifications are necessary to either Ixor or the custom class-

loader.

2.1.5 Ixor Data Format

The Ixor client saves plain-text ASCII data to the logfile specified in the
command-line arguments. The data format is shown in Figure P-T1. Thread,
class, and method identifiers are acquired from the JVMPI events indicat-
ing their creation, and are transmitted as eight-digit hexadecimal numbers
(0O4EFBFBO). Theoretically, a class identifier could occur as a method identi-
fier, although this has not been seen.

The data format minimizes redundant information: once a class or method
is recorded, it will not be saved again.fl Ixor tracks this by maintaining a
hash map from method/class identifiers to a boolean value indicating whether
or not it has been saved already; the default is that it has not been recorded.
When classes are unloaded, these values are set to false in case the method or
class identifier is reused.

The thread name, group name, and parent name are the values returned
by the JVMPI when the thread event was received; changes at runtime (via
java.lang.Thread.setName) are not visible because the JVM does not prop-
agate them to JVMPIL.

The logical start given for each thread is a monotonically increasing integer

5xdProf was significantly different: it would send traffic over the network and also used
a stateless model in which all class and method information was sent with every trace. This
was required because xdProf had multiple analysis tools entering at different points in the
execution; since we only have one analysis tool, we can optimize for this.

42

corresponding to the order in which threads were started on the VM: the first
thread started is assigned 1, the second thread is assigned 2, etcl A gap
in the sequence of logical start values indicates that the missing thread has
terminated. If a logical start value has never occurred in a stack trace, but
logical start values greater than it have, then the thread was “missed” by Ixor:
if a stack trace has threads {10, 11} and the next stack trace has threads {10,
11, 13}, thread 12 was missed.[]

Threads are recorded in no particular order; however, the logical start
value provides a way to order them by starting time and to determine a
possible parent relationship. A thread P is the possible parent of thread
C' (that is, it is possible that P started C') if P.name = C.parent_name and
P.logical_start < C.logical_start] Thread status is an integer indicating if
the thread is runnable, waiting on a monitor, or waiting on a condition vari-
able; if a thread is interrupted or suspended in any of these three states, a flag
bit will be set.

After recording information about a thread, Ixor records the number of
frames in the call stack, and then the content of the call stack as a list of stack
frames. Each stack frame consists of a method identifier and a line number.
Line numbers will reference a line in the class source file or indicate a compiled
method, a native method, or an unknown line number. The top of the call
stack, the method currently executing, is saved first; the thread entry point is
recorded last.

After the number of methods is recorded, Ixor will save the class identifier,
method identifier, method name, and a method descriptor for each method,

in no particular order. The method descriptor describes the data types of the

SMore specifically, the logical start value corresponds to the order in which the
THREAD_START event was processed.

“This occurs with very short running “worker” threads.

8Changes at run-time would defeat this, as would multiple threads with identical names.

43

Table 2.4: Descriptor formatting
Signature Programming Language Type
boolean
byte
char
short
int
long
float
double
void (only valid for return types)
Lfully-qualified-class; | fully qualified class
name:Ljava/lang/String;
[type array of type: typel]
(arg-types)ret-type method type: X,Y,Z is converted to
XYZ.

< OT o H» QWN

parameters and return data type in a concise format:

Object mymethod(int i, double d, Thread t) has the method descriptor
(IDLjava/lang/Thread;)Ljava/lang/Object; [27]. Table P.4 describes the
format for descriptors.

To reduce storage requirements, Ixor saves method information only for
those methods that currently appear in the call stack, and that have not been
seen before. Class information is saved last and, to reduce storage, only for
classes with one or more methods in the call stack and that have not been
seen before. Inner and anonymous classes are recorded with names as they are
internally represented: package.name.Quter$Inner, SomeClass$l, etc.

The Ixor client does not use all information accessible for classes: for
example, names and data types of static fields and instance fields are omitted

because saving this information would require significantly more space.

44

2.2 Ixor Server

The Ixor server is a Win32 binary written in Visual C++ 7.0. It is a stand-
alone executable which requests traces at a fixed interval from Ixor clients
and serializes the results to text files. For performance reasons, no analysis is

performed at this stage.

2.2.1 Algorithm

The Ixor server is started with a directory for output. It proceeds as in

Algorithm 2.2

Algorithm 2.2 Server main program

Require: args is an array where args[1] is an output directory with a trailing
slash and args[2] is a delay in milliseconds

1. OutputDirectory «— args[1]

2: CREATE-DIRECTORY (QutputDirectory) // For output

3: FilesList «— OPEN-FILE(STRINGIFY (QutputDirectory, “files.list”))

4: CREATE-THREAD(BACKGROUND-UDP-THREAD(args[2])) // Algo-
rithm P73

5: while true do

6: s < ACCEPT-CONNECTION(SERVER_PORT)

7. CREATE-THREAD(CONNECTION-THREAD(s)) // Algorithm P.4

Algorithm 2.3 Server BACKGROUND-UDP-THREAD(Millisecond delay)

1: PacketNumber «— 0

2: while true do

SLEEP(delay)

if |ConnectedVMs| = 0 then
continue

PacketNumber «— PacketNumber + 1

for all VM v € ConnectedVMs do
SEND(v.socket, v.udp_port, “PacketNumber”)

@

45

Algorithm 2.4 Server CONNECTION-THREAD(Socket s)

1: udp_port < READ-INTEGER(S)
2: process_id «— udp_port — BASE_UDP_PORT
f < OPEN-FILE(STRINGIFY (QutputDirectory, IP- ADDRESS(s), “-”, pro-
cess_id, “.ixor”))
WRITE(FilesList, NAME(f))
ConnectedVMs «— ConnectedVMs U {VM(s, udp_port, process_id)}
while IS-OPEN(s) do
WRITE(f, READ-STRING-BLOCKING(S))

@

2.2.2 Output

All output is sent to a directory specified on the command-line. This directory
will contain a list of the files containing stack trace information (files.list)
and files for participating VM’s (<address>-<process-id>.txt). (Note that
the process ID can be calculated as specified in 2.1.3.3.)

2.3 Roxi Analysis Tool

The Ixor Analysis Tool, Roxi, loads all information into memory and analyzes
it. It takes a directory containing files.list as its argument.
Each file name in files.list is named according to <address>-<process-id>.txt.
This file then contains the log file specified by the Ixor client during startup.
Roxi will open the log file and read in all traces. Each stack trace contains
the location of the RMI log file (B-T11); Roxi will load this RMI log file as well.
The analysis is described in Chapter B.

2.4 Differences with xdProf

Although based on xdProf ([21] and [.4), Ixor is substantially different:

46

Stack traces Ixor clients wait until the centralized server sends a request
before recording a stack trace. This gives a “snapshot” of the entire distributed
system at any given time. xdProf clients send data every k milliseconds after
starting up; there is no way to determine what was executing at the same time

across clients.

Log files Ixor clients do not send each stack trace to the server; they only
send the location of the log file, minimizing network usage. xdProf clients
do not use local storage: they send the complete stack trace contents at each

time.

Analysis and data format In Ixor, analysis is done off-line: data files
are analyzed at a later time by Roxi, the analysis tool. Ixor’s data format
takes advantage of this fact and is more compact: class names and method
information are only stored once.

Since xdProf was intended for interactive use, multiple analysis tools could
be loaded at any time. Each stack request received by the xdProf server
needs to contain class names and method information instead of identifiers
referring to previously received information. As a result, xdProf data files are

significantly larger.

Extensibility The primary purpose of Ixor’s analysis tool, Roxi, is to do
cluster analysis. It is easy to add additional distance measurements, but more
difficult to perform visualization. Since all analysis is performed is off-line,
however, different users can analyze the data in different ways. In contrast,
xdProf supports any kind of analysis tool, but only by one user at the same

time the system is running.

47

Implementation Ixor is completely written in Win32-specific C++, al-
though it can be ported to other platforms. The xdProf client was written in
cross-platform C+-+, but the server and analysis tools are completely written

in Java.

48

"PeaIy) S[3UIS B 10J 99RI} YOR)S S[(RPRAI-IOSTL | :()]-G 9INJL

(¥8% :ear(‘peeayl)uni-pesay] - Suel eael e
(90, :eaelq1odsuerld)])uni - IsaTpuequotaoouuod$iIodsuerld)] - doa - 1rodsuery twx-uns je
(9%%:eael qxodsuexldpl) seSessepaTpuey - 310dsuerld)] " doa - 3xodsuers twi-uns 3e
(69 :eael wesarrginduraeqTri)pesr weairginduraeq Tty ot eael qe
(307 :eael -wesxjgindurpersyyng)peea - wesirgandurpaisyng ot easel je
(987 :eael weaxjyginduiperssyng) IT13 wesirgandurpsrsyng ot eael je
(16:eael wearrgindurieyoog)pee weaijgandurieyoog - 1ou-eael qe
(POY1S SATIBN)peaylexoos wesrrgindurieyoog-qou-esel e
[0aPFeZ6X0 " " 000FeT6X0] ©Tqeuunt $oLx0=pTu 08P.L88X0=pT3 G=0Tad
uowsep ,0%Z 19C T 6CT-(g)uoT3dauuo) 4oL IWYHa

49

<VM process id>

<Ixor description and RMI log file location>

<virtual machine, runtime, and operating system information>
<P: packet number from the server this request corresponds to>
<V: high-resolution counter value for this packet>

<N: number of threads>

<thread 1 identifier>

<thread 1 name>

<thread 1 group name>
<thread 1 parent name>
<thread 1 logical start>

<thread 1 status>

<F: number of frames for thread 1>

<frame F method identifier> <frame F line number>

<frame F - 1 method identifier> <frame F - 1 line number>

<frame 1 method identifier> <frame 1 line number>

...other thread blocks...

<M: number of methods not saved previously>

<method 1 class identifier> <method 1 identifier>
<method 1 name> <method 1 descriptor>

<method M class identifier> <method M identifier>
<method M name> <method M descriptor>
<C: number of classes not saved previously>
<class 1 identifier> <class 1 name> <class 1 source file>

<class C identifier> <class C name> <class C source file>

Figure 2-11: Ixor data format.

Chapter 3

ALGORITHMS FOR
ANALYSIS

Overview

This chapter describes how we analyze the data collected by the Ixor software.
There are two steps. First, we compare the executions using different strate-

gies. Second, we cluster the executions using CLUTO, a clustering toolkit.

3.1 Definitions

Call stack: the methods being executed by a given thread.

Thread: a single thread of execution in a given process.

Process: a Java Virtual Machine[27]

Stack trace: all the call stacks for all threads in one system at a given

point of time.f]

'Packet number in this system represents the time.

20

o1

e Execution: all the traces for all the VMs in the system over a single run.

3.2 Comparing executions

Each execution consists of multiple virtual machines. Each virtual machine
has a role: a descriptive label (“Client A”, “Message Server”, etc.) which is
constant across executions. We would like to compare each execution with
every other execution.

Before measuring the similarity between two executions, we must first nor-
malize the stack traces across all executions by resolving opaque identifiers
to their symbolic equivalent, and then mapping that symbolic equivalent to
a value that will be shared across all executions. For example, execution 1
has a method identifier 0313AFVD which corresponds to sleepWithInterrupt;
execution 2 has an method identifier 30414A409 which also corresponds to
sleepWithInterrupt. We “replace” both of these identifiers with a globally

shared value of, for example, 49./

RMI Threads

RMI will use multiple worker threads to handle requests: RMI TCP Connection(thread number)
etc. RMI makes no guarantee about object/call/thread mapping [35], and so
a call stack which occurs in RMI TCP Connection(1) may have the same pur-
pose as one which occurs in RMI TCP Connection(2). In order to get around
this, we truncate the thread name after the first “(”, [, or “-” character: all
RMI TCP Connections are considered as one “thread.”
Since we are interested in the “global state” of the system, we only consider
stack traces which share a packet number with at least one other stack trace.

In other words, if VM 1 sends a call stack trace ¢ for packet number x, but no

2This has the added benefit of avoid string comparisons during the analysis stage.

o2

other VM does, we will not consider ¢. However, if VM 1 sends d and VM 2
sends e for packet number y, we will consider both d and e. This number can

be adjusted so only stack traces which occur when all VM'’s are participating.

3.2.1 Comparing all executions cleverly

Algorithm B shows how to compare all executions. It builds a matrix of
differences such that Result [i, j] is the difference between Executionli] and

Execution[j], generated by finding the differences between their member VM'’s.

Algorithm 3.1 Comparing all executions

1: Ezecutions < LOAD-AND-NORMALIZE-EXECUTIONS()
2: for i = 1 to | Ezecutions| do
3: for j =1 to |Ezecutions| do
if i > j then // we already calculated it
continue
ExecutionDifference «— 0
for all VM v € Ezecutions|i] do
// Let m be the VM in Ezecutions [j] which has the same role
m «— VM e € Executions [j] where m.role = v.role
10: EzecutionDifference += COMPARE(v, m) + COMPARE(m, v)
11: Results[i, j| = Results]j, 1] = EzecutionDifference
12: Save results matrix

It is easy to see that this has time complexity @ where n = |Executions|
if we only consider “symmetric” measurements: EzecutionDifference(eq,es) =
EzecutionDifference(ea, e1). If the metric is not symmetric, the cost is propor-
tional to n?. (Note that the Compare function for VMs does not have to be
symmetric., although it is in Ixor.)

In order to compare VMs with the COMPARE(v, m) function, we use Al-

gorithm B.2.

23

Algorithm 3.2 COMPARE(v, m): comparing VM v to m

Require: DISTANCE(¢, d) calculates distance between call stacks ¢ and d
1 diff — 0
2: for all Thread ¢t € v do
3: if m has a thread with the same name then
4: MCallStacks «— GET-CALL-STACKS(m, t.name)
// Get all the call stacks which occur in a thread of the same
name in VM m
for all CallStack ¢ which occurs in ¢ on v do
// Find the most similar call stack on m
bestMatch < (min DISTANCE(c, d) for d € M CallStacks)
diff += bestMatch x (# of times ¢ occurs in v)
return diff

3.2.2 Intuition for multiplying call stacks by occurrences
Our intuition tells us that:

e [f the call stacks are similar for a long period of time, then the VMs are

very similar.

e [f the call stacks are similar for a short period of time, then the VMs are

somewhat similar.

e If the call stacks are different for a short period of time, then the VMs

are somewhat different.

e If the call stacks are different for a long period of time, then the VMs

are very different.

We approximate execution time as “the number of times a call stack oc-
curred during execution.” This is a very rough approximation: code might not
even have been executing: the thread may be blocked, for example. To make
the VM difference follow our intuition, we multiply the number of times the
call stack occurred (large if over a long period of time, small if over a short

period of time) by the distance between the call stacks (large if very different,

o4

small if very similar). By adding over all call stacks, we get a distance metric

which is intuitive.

3.2.3 Intuition for Compare(a,b) + Compare(b, a)

We define the difference between executions to be the sum of Compare(a,b)
and Compare(b,a) for all appropriate VMs. This is because we want execu-
tion similarity to be symmetric: if execution i is similiar to execution j, then
execution j should be similar to execution i.

Therefore, if VM A is distance x from B, then B should be distance x
from A. However, since we multiply the call stack distance by the number
of occurrences, this is not necessarily true. Let there be three executions,
E4, Ep, Ec each containing one VM (respectively, A, B, C). Assume that
VMs A, B, and C have one thread and one call stack each (a,b = a',c = a”).
Call stacks b and ¢ will always have minimum distance from a, so we represent
them as a’ and a”. Say that A contains 10 occurrences of a, B contains 10
occurences of a’, and C contains 100 occurences of a”. Let d = Dist(a,a’) and
e = Dist(a,a”). Then Compare(A,C) = 10e and Compare(C,A) = 100e.
Since we want the difference between executions to be symmetric, we add
these two values, so Difference(E 4, E¢) = 110e.

If we did not add the difference, then Difference(E 4, E) =~ Difference(FE 4, E¢),
which does not agree with our intuition that A is more similar to B because

it has the same number of call stacks.

3.3 Comparing call stacks

Now that we have a framework for comparing executions and virtual machines,
we want to find algorithms which will compare two call stacks. A call stack

consists of multiple stack frames, where each stack frame consists of class

25

Csi: £ > g ->h > i

CS2: £ > g ->h > j

CS3: k > j ->h >g > f
Cs4: £f ->g->h ->f ->g->h

Figure 3-12: Call stacks

name, method name, method descriptor, and line number. We want “similar”
call stacks to have a low distance while very different call stacks should have
a higher distance.

For example, in Figure B-T3, CS 1 and CS 2 are fairly similar: they differ
only by the last (top) stack frame. However, CS 3 is very different from CS 1
and CS 2: it’s closest to CS 2 when reversed.

3.4 Edit distance

One classical distance metric presented in [6] is the edit distance between
two sequences: the number of insertion, deletion, or substitution operations it
takes in order to transform one sequence into another. A lower-valued distance
indicates that call stacks are more closely related than a higher-valued distance.
In Figure B-12, we would have to make one substitution to change CS 1 to CS
2 (change i to j).

The classical algorithm for measuring edit distance uses dynamic program-
ming and runs in time O(mn), where m and n are the length of the sequences
[6]. The algorithm is shown in Algorithm B.3; it depends on a user-specified

strategy consisting of three functions:

e INS(y, j) will return the cost of inserting y|[j]

e DEL(x, i) will return the cost of deleting z[i]

o6

e SUB(X, i, y, j) will return the cost of substituting z[i] with y[j]

Algorithm 3.3 EDIT-DISTANCE(z, y, strategy) (from [6])

n —lyl

: T[-1,-1] «~ 0

:forj—0ton—1 do

T|-1,7] < T[-1,7 — 1] + strategy.INs(y, j)
: for i — 0tom—1do

Tli,—1] « T[i — 1, —1] + strategy.DEL(z,)
for j «— O0ton—1 do

© PN Wy

Ti,j] <« min{T[i —1,j — 1] + strategy.SuB(z, 1, y, 7),
T[i — 1, j] + strategy.DEL(z, 1),
Ti,5 — 1] + strategy.INs(y, 7)}

10: return T'[m — 1,n — 1]

By changing these functions, we can get different cost metrics with different
properties. I used several different strategies for analysis.

The Levenshtein distance strategy (B.4.1), created by Vladimir Levenshtein
in 1965, is a very basic strategy: it has constant costs for the insertion, deletion,
and substitution operations [26].

I created two classes of strategies: location-sensitive and call-stack sen-
sitive. The four location-sensitive strategies (Favor end (B.5), Squared favor
end (B.g), Favor beginning (B.7), and Squared favor beginning (B.§)) assign
different costs depending only on the location of the change. For example,
making changes at the beginning of the call stack might be more prefer-
able (lower cost) than making changes at the end of the call stack. The
details of the changes do not matter: editing java.io.File.delete():711 to
javax.swing.JScrollpane.getHorizontalScrollBarPolicy () :445 has the

same cost as editing java.io.File.delete():711to java.io.File.delete():714

57

(if the locations are the same).

The three call-stack senstive strategies (Call stack strategy 1 (B.I(), Call
stack strategy 2 (B.I1), and Call stack strategy 3 (B.12)) assign different costs
depending on both the location of the change and the contents of the call
stack. Small changes (changing line numbers when the class and methods
are the same) cost less than large changes (changing the class name). For
example, making small changes (changing line numbers) at the beginning of
the call stack might be more preferable (lower cost) than making large changes

(changing classes, methods, and line numbers) at the end of call stack.

3.4.1 Levenshtein

The simplest of all edit distance strategies is the Levenshtein distance, created
in 1965 by Vladimir Levenshtein [26]. Substituting a letter with itself costs
nothing, and all other operations have a cost of one. Algorithm B.4 shows the

formal definition.

Algorithm 3.4 Levenshtein distance

INS(z,) =1
DEL(x,i) =1
if
SUB(z,1,v,) if 2] =yli],

1 othervvlse

3.4.2 Location sensitive-strategies
3.4.2.1 Favor end

The “favor end” strategy decreases the cost per operation as the position gets

higher: we prefer insertions and deletions at the end of the call stack instead

o8

1

cost

1

cost

1

cost

+ 4 N M F W0

Figure 3-13: Levenshtein example

29

Compared with | Levenshtein | Favor | Favor Favor Favor
12345 end end beginning | beginning
squared squared
6 2345 1 6 26 1 1
12346 1 2 2 5 17
712345 1 7 37 1 1

Table 3.5: Comparison of Levenshtein with location-sensitive strategies

Cost

Favor Beginning ———
‘Favor End -

|

|

xsize/2

Position

Xsize

xsize/2

Xsize

Figure 3-14: Favor insertion/deletion costs.

of at the beginning.fi This makes some sense: as call stacks “diverge”, their

distance increases at a faster rate than it would with Levenshtein. The cost of

a substitution is based on the average position.

Figure B-T4 shows the cost of insertions and deletions, while Figure B-15
shows the cost of substitutions for the normal favor end strategy. Figure B-19

shows the cost of insertions and deletions, while Figure B-17 shows the cost of

3This strategy could be called “penalize beginning”, as well.

{Todo #3.2: Generate this.}

Figure 3-15: Favor substitution costs.

60

. T xsize?
Favor Beginning Squared ——
- Favor End Squared - -+ -
: /
, / Y
/
yd
Cost e
1 - I RN xsize
0 xsize/2 xsize
Position

Figure 3-16: Favor squared insertion/deletion costs.

{Todo #3.3: Generate this.}

Figure 3-17: Favor squared edit costs.

substitutions for the favor end squared strategy. An example is in Figure B-18.
The “favor end” and “favor end squared” algorithms are presented in Al-

gorithm B3 and Algorithm

Algorithm 3.5 Favor end strategy

INS(z,i) =1+ |z| —i
DEL(z,i) = 1 + |z] — i

)0 if zli] = ylj],
SUB(T,4,9,J) = {1 + —‘x|*i;|y‘*j otherwise

3.4.2.2 Favor beginning strategy

The favor beginning strategy does the opposite of favoring the end (Algo-

rithm B.7). We can also square the values to drastically increase the difference

61

cost = 6

cost =1 + 572= 26
1 6
2 | 2
3 | 3
4 | 4
5 | 5

cost = 2

cost T 2=1+1"2 =2
1 | 1
2 | 2
3 | 3
4 | 4
5 "6

cost =7

cost™2 =1+ 672 = 37
+ 7
1 | 1
2 | 2
3 | 3
4 | 4
5 | 5

i

Figure 3-18: Favor end

Algorithm 3.6 Favor end squared strategy

if z[i] = y[j],
. N2
14 (Eﬂ:i%ﬁﬂ:l) otherwise

62

(Algorithm B.§). An example is in Figure B.4.2.2.
Favoring changes at the beginning is appropriate if we want to assign more

weight to frames which occur later in the call stack.

cost =1

cost ~ 2 =1
1 6
2 | 2
3 | 3
4 | 4
5 | 5

cost = 5

cost " 2=1+4 x4 =17
1 | 1
2 | 2
3 | 3
4 | 4
5 6

cost =1

cost ~ 2 =1
+ 7
1 | 1
2 | 2
3 | 3
4 | 4
5 | 5

{Todo #3.4: Explanation}

3.4.3 Call stack-sensitive strategies

All of the call stack strategies multiply a factor based off the location of the
operation (beginning, end) by the distance between the call frames.

The distance between call frames is determined by comparing the contents

63

Algorithm 3.7 Favor begin strategy

INS(z,i) =141
DEL(z,7) =141

o 0 if z[i] = yl),
SuB(x,i,y,7) = {1 + % otherwise

Algorithm 3.8 Favor begin squared strategy

INS(2,4) = 1+ i
DEL(2,4) = 1 + i

R if z[i] = ylj],
SUB 0, Y, = i+
(2,1, 9,]) {1 + (%)2 otherwise

(class name, method name, method descriptor, and line number). The distance
between two call frames with different class names is the biggest possible dif-
ference and is assigned a cost of 1000. If they have the same class name, but
different method names, the cost is assigned 100. When the method names
are the same, but the parameters or return type is different, the cost is 10.
Finally, if the line numbers differ, the cost is 1. Comparison stops after the
first mismatch: two same-named methods (toString()) in different classes
are assigned 1000.

If the call frames are identical, the cost is a negative number: —1000 X
factor. This has the effect of preferring exact matches over changes.

Assigning costs in increasing order is intuitive: different classes are further
apart than different methods in the same class; two methods in the same class,
with the same name, but different parameters are further apart than two lines

within the same method with the same parameters.

64

Using 1000/100/10/1 for the costs, however, is not as straightforward. Fun-
damentally, this is a heuristic.

There are approximately 2000 source files in the Java source code tree.
The average length per source file is 300 lines. The Java source tree is heavily
commented, so we assume a code to comment ratio of 1.0 and say that there
are approximately 150 lines of code per source file] The average number of
methods per source file is 15, and so there is approximately 10 lines of code
per method.

If we are on different lines of the same method (C.a(int):15 and C.a(int):20),
then we assign a cost of 1 because we are barely different.

If we are in two overloaded versions of the same method (C.a(int) and
C.a(double)), then we know that the lines will be different (by definition).
Since there are approximately 10 lines per method, we assign a cost of 10.

If we are in the same class, but in two different methods (C.a and C.b), we
assign a cost of 100. There are ten other methods in the class and each method
has ten lines of code; we multiply and get a cost of 100. (Alternatively, there
is approximately 100 lines of code in the class.)

If we are in different classes (C and D), then we assign a cost of 1000.
One of the 10 methods in class C is going to be replaced with one of the 10
methods of class D, and one of those methods is going to have 10 lines of code;

we multiply and get a cost of 1000.

3.4.3.1 Call stack strategy 1

The call stack strategy scales linearly and favors changes to the beginning: call

stacks which start out the same are closer than those which do not (Algorithm

B.10).

50nly lines with code will show up in the call stack.

65

"$1800 pue suorjerodo oeIs e :9°¢ SR,

$G8: () SOTTIISTT []OTTd+ TG8:()SOTTIISTT []oTTS Pquinu ourg | T
(I93TTF I93TTJOWRUSTTI)SOTTAISTT []OTT A+ ()SOTTAISTT []OTT] | odAT, wInjoy ‘smojourered poypwy | 0T
OTTJMONO©IRDID« SOTTIISTT awreN POYRIN | 00T
Sutaqg-Suer-esel« o1 0T eAel sse[) | 0001
ordurexry 9OURIdHI(] | 3S0D)

66

Algorithm 3.9 COMPARE-FRAMES(f, g) Comparing two stack frames

1: if f.class_.name != g.class_name then

2: return 1000

3: else if f.method name != g.method name then

4: return 100

5: else if f.method_signature != g.method_signature then
6: return 10

7: else

8: return 1 // tline |= g.line

Algorithm 3.10 Call stack strategy 1

INS(z,4) = 1000 x (1 +)
DEL(z,7) = 1000 x (+1

SUB(z,i,y,j) = (if z[1] = ylj],

{COMPARE FrRAMES(z[i], y[j]) otherwise

3.4.3.2 Call stack strategy 2

Instead of favoring the beginning or the end, this favors both the beginning
and the end. In other words, we penalize changes to the middle but are okay
with changes at the beginning or end of the stack. For example, ten methods
may call one important sequence of operations, which branches out into ten
different functions. In other words, we care more about the items in the middle
of the stack.

In some ways, this is appropriate for RMI calls: the RMI engine at the
beginning of the stack dispatches operations to the application code and the
application code uses the Java library. Which RMI function called the ap-
plication code is not important, nor is the implementation within the Java
library.

The relation between the position and factor is shown in Figure B-1T9. The

factor ranges from 1 to xsize/2; the maximum factor occurs when the position

67

is xsize/2. Algorithm B.T1] describes the process.

Algorithm 3.11 Call stack strategy 2

INS(z,4) =1000 x (1 n % _ ()

)
DEL(z,) =1000 x (1 + % —~ <)>
SuB(z.i.y.j) = (\323! abs (Z |z \) Wl s (\M)) "

{—1 if i) = y[j],

COMPARE-FRAMES(z[i], y[j]) otherwise

3.4.3.3 Call stack strategy 3

Call stack strategy 3 is similar to Call stack strategy 2, except that it will reach
a peak of xsize at position xsize/2, instead of xsize/2 at xsize/2. Algorithm

B.T2 defines the strategy.

Algorithm 3.12 Call stack strategy 3

INS(z, 1) =1000 x 2 x (1 +

)
)
SUB(x,i,y,j):(H abs (%)jt‘i—abs(j—%))x

{—1 if i) = y[j],

COMPARE-FRAMES(z[i], y[j]) otherwise

|| ||

2

DEL(z, i) =1000 x 2 X (1+@—abs<'— il
2

1\3|&2 1\3|€~2

i} —abs(i—
1
|

68

S1q
od1

-¢

61

IS
)

T Y

e

"SI0

Hsod
(o)
u

/o718X
¢

/o71sX
¢

9ZISX

++

I

;

D
e
S ®D
e} I
S /o)
il
‘

o
I

69

3.5 (Gap distance

Instead of penalizing the deletion or insertion of letters, we can penalize the
length of the gaps with an algorithm due to Gotoh [I5] and presented in [6].
Let D(i,j) be the score of an optimal alignment between xox;...z; and
Yoy1...y; ending with deletions of letters of x. I(i,j) indicates the score of
an optimal alignment between zox;...z; and ypy;...y; ending with insertions of
letters of y. T'[i, j] is the score of an optimal alignment between xgx;...x; and
Yoy1..-yj. Let A(k) indicate the cost of a gap of length k. Then the computation
of an optimal alignment (lowest distance) is done with the following recurrence

formula [G]:

D(i,7) =min {T[k,j] + \(i — k) | k € [0,3 — 1]}
I(i,7) =min{T[i, k] + A\(j — k) |k € 0,5 — 1]}

T[i,j] =min {T[i — 1,5 — 1] + SuB(z, i, y, §), D(3,5),1(i,j)}

If we do not restrict A, then the cost of the optimal alignment can be found
in O(mn(m +n)) time. However, if we let A(k) = g + h(k — 1), where g is the
cost of opening a gap, and h is the cost of widening the gap, we can solve the

problem using Algorithm B.13 in O(mn) time with the recurrence [8, [5]:

D(i,j) =min{D(i — 1,7) + h, T[i —1,5] + g}
I(i,7) =min{I(i,7 — 1)+ h,T[i,j — 1]+ g}

T [2,]] =min {T [i - 1,j - 1] + SUb(miayj)a D<i7j)7 [(27])}

The intuition for using this for call stacks is that we want to favor long

sequences over multiple insertions and deletions.

70

Algorithm 3.13 GAP-DISTANCE(z, y, strategy) (from [I5, B])

1 m « |z|

2 n— |y

3: g < Strategy.gap_open

4: h « strategy.gap_widen
5. for i < —1tom —1do
6: Dli,—1] « o0

7 [[i, —1] «— 00

8 for i — —1ton—1do
9: D[-1,i] « o0

10 I[-1,i] « c©

11: T[—l,—l] —0

12: T[—1,0] «— ¢

13: T[0,—1] < ¢

14: for 1 — 1 tom —1do
5. T[i,—1] <« Tli—1,-1]+h
16: for 1 — 1 ton —1do

1. T[-1,i] «T[-1,i—1]+h

18: for i — 0 tom — 1 do

190 forj«—Oton—1do

20: Dl[i,j] + min{D[i — 1,4j] + h,T[i — 1,j] + g}

21: I[i, 7] < min{I[i,j — 1]+ h,T[i,5 — 1] + g}

22: Tli, 7] < min{T[i — 1,5 — 1] + strategy.SUB(z,1,y,5), DI, 5|, I[i, j|}

71

3.5.1 Distance strategies

For our distance strategy, we use the Levenshtein strategy (see B.4.1) with two
additional fields: gap_open = 3 and gap_widen = 1.

3.6 Call stack and stack frame counting

We can also use a much simpler method of comparing executions: count the
number of times unique call stacks (identical sequences of stack frames) and
unique stack frames (classes, methods, and line numbers) occurred.

While intuitive and fastf], this method does not consider the semantics of
call stacks. It is useful as a basis for comparison, though: comparing counts

is the most traditional way of doing execution profiling.

3.7 Cluster analysis

After running our analysis on the data, we have several comparison matrices:
one for each strategy. For our edit and gap strategies, each row represents an
execution and each column represents the difference/distance between the row
and an execution. In the case of our simple count profiling, each row is an
execution and each column is the number of times a stack frame or stack trace

occurred.f]) Our goal is now to cluster these executions using various settings

in CLUTO [rd].

SRoxi analyzes this approximately 10 times faster than the edit or gap approaches. The
resultant files for clustering, however, have an average of 1000 columns, instead of the n
columns (one for each execution) as in edit or gap strategies.

“In the sample applications, there were approximately 1500 stack frames which occurred
and 4000 call stacks.

72

3.7.1 Parameters

There are five parameters to consider when we evaluate clustering algorithms.

3.7.1.1 Number of clusters

Obviously, the number of clusters is a large factor in determining the accuracy
of the clustering approach. If there are too few clusters, normal and failed
executions will be grouped together; if there are too many, then it is difficult

to spot trends.

3.7.1.2 Clustering method

CLUTO supports five different clustering methods. Agglomerative hierarchial
clustering was selected as the clustering method due to the advantage in exe-
cution speed.

The desired k-way clustering solution is computed using the agglomerative
paradigm: locally optimize (minimize or maximize) a particular clustering
criterion function. The solution is obtained by stopping the agglomeration

process when k clusters are left. [1Y]

3.7.1.3 Clustering criterion function

Three clustering criterion functions were used.

Single-link In single-link clustering (also called the connectedness or min-
imum method), we consider the distance between one cluster and another

cluster to be equal to the shortest distance from any member of one cluster to

any member of the other cluster [5].

73

Complete-link In complete-link clustering (also called the diameter or max-
imum method), we consider the distance between one cluster and another clus-
ter to be equal to the longest distance from any member of one cluster to any

member of the other cluster [5].

UPGMA In this method, the distance between two clusters is calculated
as the average distance between all pairs of objects in the two different clus-
ters. This method is also very efficient when the objects form natural distinct
"clumps,” however, it performs equally well with elongated, ”chain” type clus-

ters.

{Todo #3.5: Why these?}

3.7.1.4 Scaling each row
We might also want to apply scaling to each row; there are two options for
this.

none No scaling is performed.

sqrt The columns of each row are scaled to be equal to the square-root of

their actual values [19]. Let:

+1 ifx>0
sign(z) =
-1 ifz<0

T;,j = Sigl’l(?"l‘,j)w /Ti.5

74

3.7.1.5 Similarity

The similarity between objects is computed using the cosine function: the dot

product divided by their magnitudes:

8, = —2zi (2i%) (3.1)

\/ 2o T 20 Y5

Chapter 4

CASE STUDY

Overview

The motivating factor for this work is to find a way of examining large sets
of executions in a distributed system in order to find failures. I will outline
two realistic sample applications which use classical distributed systems al-
gorithms. Then I will introduce application-level defects and perform fault
injection similar to faults in the real world. A large set of executions will be
analyzed with the strategies and clustering methods discussed in Chapter §

and discuss the effectiveness of each method.

4.1 Possibilities

I examined several Java distributed systems before deciding to write my own

sample application.

75

76

4.1.1 ECPerf

ECPerf is the J2EE benchmark kit: it has an end-to-end scenario involving
Enterprise JavaBeans, databases, servlets, etc. However, the license agreement
prohibits modification of the source code, discussing the results, or the design

of the system.

4.1.2 jBoss

jBoss is a J2EE container for Enterprise JavaBeans [17]. While it is open
source, and comes with some unit tests, it is suboptimal for an example for

several reasons.

e Very large system/difficult to conceptualize. Consisting of over 1900
Java source code files and 40,000 lines of code, it is very difficult to

conceptualize the relationship between so many classes.

e Test set. Only 150 unit tests exist and these are mostly “toy” programs
which are intended only to check the most basic functionality for a short

period of time.

e Not a real world application. jBoss is a framework for writing other

applications. Most people write applications, not frameworks.

e Lack of VM’s. Out of the box, the jBoss unit tests run on two VM’s:
the jBoss application server (which runs the database as well) and the
test runner. It is possible to run the database on another VM, but the

tests are centered on a single-machine.

e Uses raw network sockets traffic in some situations. jBoss has a JDBC

driver which uses raw sockets to communicate with the database; this is

not RMI.

7

e Classloading. jBoss uses its own assemblerf] in order to generate proxies;

this makes it difficult to trace code: Proxy$0, Proxy$1, etc.

e Fault injection. It was difficult to find valid places to insert faults into
the jBoss source code. Comparing to old versions (2.2 and 2.4.1 versus

2.4.4) at the source code and CVS level did not give any guidance.

4.1.3 Jini Technology Core Platform Compatibility Kit

The Jini TCK was also examined. It contains 20 tests (divided among service,
client, and lookup service categories) which are intended to test if a Jini service
conforms to the Jini Technology Core Platform Specification. Namely, is this
service a good citizen with respect to the Jini world?

However, it generated very little data. Most of the tests for Jini services
are time-based: x must do y before time t. Therefore, the TCK spends a large
portion its time waiting, with very actual code executing. I also compared
different versions of Jini (1.1, 1.2) to the TCK (1.1B, 1.2A), with no clear

sSuccess.

4.1.4 Applications selected

Due to these problems, I wrote two sample applications which use classical

distributed systems algorithms: Bully and Byzantine.

4.2 Bully application

“Bully” is a distributed system which searches for large prime numbers, similar

tohttp://www.distributed.net. Each machine has a static priority and the

L org.jboss.proxy.ProxyAssembler

http://www.distributed.net

78

machine with the highest priority is elected the leader/coordinator using the

bully distributed election algorithm, from Garcia-Molina [I4].

The clients connect to the leader and request tasks; clients work on the task

and notify the coordinator with the results of the computation (whether or not

the number is prime). The search space and results are replicated throughout

the system so another machine can take over if necessary. All communication

uses Java RMI and most requests go through a shared, reliable message server

instead of between clients.B

Multiple virtual machines. Bully requires a message server, a coordina-

tor, and several client VMs.

Well-defined set of behaviors makes the system easier to conceptualize.
Clients join the message server, start an election, get tasks, publish re-
sults, etc. It easy to see that several transitions do not make sense:

sending results to a non-coordinator, etc.

Non-deterministic. While the jBoss unit tests may have different thread
ordering, Bully has different outcomes: Client 1 may handle many tasks

or very few of them.

Heavy use of RMI. Clients use RMI to invoke methods on the message
server; the message server uses RMI to invoke methods on other clients,

ete.

Non-trivial. Bully uses lots of threads: worker threads, RMI handling,

timeouts, etc.

2This simplifies the logic from the client perspective, yet is a realistic “middleware”
approach.

79

4.2.1 Architecture

Bully consists of approximately 4000 lines of Java code. There are four main

packages: bully.algorithm, bully.client, bully.coordinator, and bully.messaging.

bully.algorithm Various shared items.

bully.client The actual client which connects to everything.

bully.coordinator All coordinator-related classes: Task, Results, etc.

bully.messaging The reliable message server is in here.

4.2.2 Execution flow

4.2.2.1 Starting up

1.

A client comes up and looks up the Messaging Server.

. The client registers itself with the Messaging Server.

The client starts an election.

. At some point, the leader/coordinator has been decided.

The client requests a number from the coordinator and tests it for pri-

mality.
The client notifies the coordinator with the result.

The coordinator will tell the client how many work items are left.

30

{Todo #4.6: Architecture picture}

picture goes here

Figure 4-20: Bully architecture

81

4.2.2.2 Election details

Although very similar to Garcia-Molina’s paper, this uses a centralized server,
which simplifies the client code.

‘ {Todo #4.7: Election algorithm} ‘

{Todo #4.8: Sequence diagram}

Figure 4-21: Sequence diagram for election

82

{Todo #4.9: Sequence diagram}

picture goes here

Figure 4-22: Sequence diagram for prime number processing

83

4.2.3 Specification

Fundamentally, there are three requirements:

1. Communication is reliable and robust to network failures.

2. The system shall eventually reach a consistent state and have one leader

(coordinator).
3. All numbers will be processed within a reasonable amount of time.f]

4. Clients will not attempt to take over.

Violations of these conditions result in catastrophic failure: a VM may
crash/exit, no progress is made in the election algorithm, multiple coordinators

exist, etc. The common (90 — 99%) case is that nothing goes wrong.

4.3 Byzantine application

The Byzantine application uses the Byzantine Generals algorithm, described
by Lamport et al. in [4], to decide whether or not the participants should
attack (attempt to factor a prime number) or retreat (exit without doing
anything). The complication is that the commanding general and/or any of

the other generals may be unloyal and relay the wrong message.

4.3.1 Description of problem
4.3.2 Algorithm

4.3.3 Implementation

Consists of approximately 3500 lines of Java code.

Packages: ...

3The time limit is three times the normal execution time.

84

4.4 Fault injection

4.4.1 Failure-inducing behaviors

We are interested in failure-inducing behavior specific to distributed systems.

For this, we consider two main classes:

Detectable errors in communication A “detectable” error is one which
is detected via a Java I0Exception. For example, a socket may close early, be
reset by a peer, timeout, be unable to connect, have issues receiving the data,

have issues sending the data, etc.

Undetectable errors in communication An “undetectable” error is an
error which does not fail loudly: a large network delay, or the random swapping
of bytes within a packet by an attacker are two examples. Sometimes these
will cause exceptions in the future (for example, a method hash value has been

modified) and other times they will not (the value of a parameter is changed).

4.4.2 Injection

In order to make this as generalizable as possible, it is desirable to minimize
the number of changes necessary to the environment. There are two places

where fault-inducing code will be injected:

1. java.net.SocketInputStream which handles input from a socket

2. java.net.SocketOutputStream which handles output from a socket

The fault injection code will:

1. Decide whether or not a fault should be injected

85

2. If so, then write a message to a log indicating that a fault will be injected,

and

(a) Throw an exception, or

(b) Randomly swap bytes in the input/output

3. Otherwise, proceed as normal

4.5 Application-level issues

Application-level violations of the program specification are considered to be
worthy of further inspection. For example, a program could change its priority
and take over as the coordinator, or a general could send conflicting messages

to other generals.

4.5.1 Bully — priority elevation

After a period of time, one of the clients will perform the following events:

Unregister from the Message Server

Change its priority to 200

Re-register with the Message Server

Perform the “recovery” step as specified in the algorithm

This code was inserted without modifying existing line numbers. (Chang-

ing line numbers would be a confounding effect.)

86

4.5.2 Byzantine — unloyal generals

As described in the Byzantine Generals paper, generals (including the com-
mander) can be unloyal or traitorous: they will either not answer or send the
Wrong answer.

In order to test Ixor’s ability to detect failed executions, I generated a
set of 277 “normal” executions via Ixor where the fault injection framework
is present, but no faults are injected. Then, I generated 15 fault-injected
executions (5%) which exhibited failures as described above.

I ran Roxi against this large (over 1.4 gigabyte) data set and generated
dissimilarity matrices (as described in Chapter) for each strategy. This was

then analyzed with CLUTO using the clustering algorithms discussed in B.7.

4.5.3 Faults injected

Table E.7 gives the number of faults injected into the executions. Execution
7008 was manually terminated early in order to simulate a massive simulta-
neous failure: a power failure or denial of service attack, for example. The

probability of an IO exception or random byte swap was set to P = 0.001.

{Todo #4.10: Explain results} {Todo #4.11: Byzantine failures}

4.6 Evaluating the approach

4.6.1 Sampling methods

After generating all the clustering combinations, I created a program to per-

form the following types of cluster sampling on the clusters.

87

Fault count | Execution identifier
6000
6001
6002
6003
6004
6005
7000
7001
7002
7003
7004
7005
7006
7007
7008

O | OO = T O W WU DN —| W

Table 4.7: Fault count

4.6.1.1 Random sampling

The easiest sampling method is to randomly sample m executions from the

entire population.

4.6.1.2 1-per cluster sampling

The 1-per-cluster sampling method selects one execution at random from each
cluster. Hence, the number of executions to be checked is equal to the total
number of clusters. Since small clusters were typically more common than
large ones in our experiments and since executions with unusual profiles are

found in small clusters, this method favored the selection of such executions.

4.6.1.3 n-per cluster sampling

The n-per-cluster sampling method is a generalization of one-per cluster sam-
pling. It selects a fixed number n of executions from each cluster. If there

are fewer than n executions in a cluster, then all of them are selected. The

38

number of executions selected by this method depends on the distribution of
cluster sizes; the maximum is n times the total number of clusters.
n-per-cluster sampling has a greater chance of finding a failure in a cluster

that also contains successful executions than does 1-per-cluster sampling.

4.6.1.4 Small-cluster sampling

The small-cluster sampling method selects executions exclusively from small
clusters. The sample size m is chosen first. The clusters are then formed into
groups composed of all clusters of the same size. Starting with the group of
smallest clusters, executions are selected at random and without replacement
from the clusters in the current group. If the executions in a group of clusters
are exhausted without reaching a total of m executions, the group with the
next larger cluster size is sampled. This process continues until m executions

are selected.

4.6.1.5 Adaptive sampling

The adaptive sampling method augments the sample when a failure is found,
to seek additional failures in its vicinity. Adaptive sampling proceeds in two
phases. First, one execution is selected at random from each cluster, as in 1-
per-cluster sampling, and the selected executions are checked for conformance
to requirements. Then, for each failure found, all other executions in its clus-
ter are selected and checked. The number of additional executions selected
depends on the distribution of failures among clusters. Adaptive sampling
should be beneficial if failures tend to cluster together.

Adaptive sampling outperformed the other methods: it had a higher failure
detection rate at lower sample sizes than the other methods. (This confirms

the finding in [T3].)

89

4.7 Results

4.7.1 Distribution of failures

We want to verify that failures are not uniformly distributed. We do this by
comparing the percentage of failures py found in the smallest percent of
clusters to the expected percentage of failures x in a uniform distribution (z).

Table .8 shows that the percentage of failures is significantly larger than

would be expected for a uniform distribution.

bully02.avg 8.90056
bully05.avg 16.5997
bullyl10.avg 29.4211
bully25.avg 53.2867
bully50.avg 75.7643
byz02.avg 5.99647
byz05.avg 14.1174
byz10.avg 26.6595
byz25.avg 55.5556
byz50.avg 76.5833

Table 4.8: Percentage of failures found in the subpopulations contained in the
smallest clusters.

4.7.2 Singletons

Figure shows the relationship between failures in singleton clusters and
all executions in singleton clusters. With the Bully program, on average, over
all clustering methods, 14% of failures were found in singleton clusters but
only 5.7% of the total executions were in singleton clusters. The Byzantine
program had 15% of failures in singleton clusters on average, with only 6% of

total executions in singleton clusters. This confirms our intuition that since

90

Bully:
percentage of failures in singleton clusters
(averaged over all clustering methods)
Median: 9.09091
Average: 14.2399

percentage of all executions in singleton clusters
(averaged over all clustering methods)

Median: 2.67559
Average: 5.73334
Byzantine:

percentage of failures in singleton clusters
(averaged over all clustering methods)
Median: 0
Average: 15.1996

percentage of all executions in singleton clusters
(averaged over all clustering methods)
Median: 3.125
Average: 6.13313

Figure 4-23: Singleton failures compared to singleton normal executions.

failures have unique profiles, they will tend to be in singleton clusters.

4.7.3 Purity

The measure of “purity” is presented in [63]; it measures the “extent to which
each cluster contained documents from primarily one class.” (Instead of docu-
ments, we are looking at executions. Also, there are only two classes: normal
executions and failed executions.) Let S, be a cluster of size n,. n' is the

number of documents of the ith class which were assigned to the rth cluster.

From [63]:

91

Purity of a cluster S, is defined to be

P(S,) = 1 max () (4.2)

n. i "
which is the fraction of the overall cluster size that the largest
class of documentsf] assigned to that cluster represents. The overall
purity of the clustering solution is obtained as a weighted sum of

the individual cluster purities and is given by

k
Purity = %P(s,q (4.3)

r=1
In general, the larger the values of purity, the better the clustering

solution is.

Ideally, we would have a purity value of 1.0, indicating that each cluster
consisted of only one class of executions. Purity is useful for verifying how
effective it our clustering is, but it is not useful from a practictioner standpoint
because the classes are unknown. However, if we know that the purity for a
clustering technique is very high (close to 1.0), then, in the future, we could
reasonably apply 1-per-cluster sampling (instead of adaptive sampling) to infer
the class of the every execution in the cluster.

Table I.9 shows the results for the Bully executions and Table f.10 shows

the results for the Byzantine executions.

4.7.4 Average percentage of failures

Using the adaptive sampling method and averaging across the six clustering
settings, we can find the average percentage of failures found.
Table E.T1T shows the results for the Bully executions and Table .12 shows

the results for the Byzantine executions.

“In our case, executions: whether or not an execution is a normal or a failure.

92

‘A[g 10§ sonund 98RIOAY 6§ O[qe],

£68666°0 | €€8666°0 | €65086°0 | 65C896°0 | £6€666°0 | STER66°0 ¢L6'0 L€9.6°0 | 6TS066°0 | LOPS86°0 | STI8LLE'0 06
£68666°0 | 7¥¥666°0 | €68LL6°0 | €60L96°0 | €6€866°0 | L99.66°0 | €¢L896°0 | 9¢¥€L6°0 686°0 | L06€86°0 | 8LLGL60)
TIT666°0 | €6€8866°0 | €9€SGL6°0 | TT1996°0 | 8¥TIL66°0 | 6195660 | €9€996°0 | 65GC0L6°0 | €CL986°0 | CS86L6°0 | €96CL6°0 09

LE866°0 | T86966°0 | PLOEL6'0 | LE0S96°0 L£966°0 | 688660 | 8¥1¥96°0 | #0LLI6°0 | 6TSES6°0 | ¥L0GL6'0 | S890L6°0 554
70¢L66°0 | 9590S66°0 | €6€696°0 | €65696°0 | TFLE66°0 | G8BIS86'0 | 6GLT96°0 | T¥L¥96°0 | #0L0S6°0 | ¢Cc696°0 | €97,96°0 0¢
9¢vv66'0 | STET66°0 | 9¢6996°0 L8¢96°0 L8066°0 | ¢SELL6'0 | TTT096°0 | €6€2¢96°0 | 6199L6°0 | 8LCRS6°0 | 610T96°0 qT
GTEL86°0 | TS6¥S86°0 | 996796°0 | L99T96°0 | 6TISTIR6'0 | 6T0C96°0 | 6888G6°0 | 688096°0 | T19996°0 | F¥68¥6°0 | £€60056°0 8
TTTLS6°0 | 9908S6°0 | TTTT96°0 | £99¢S6°0 | ¢S80G6°0 | T196€6°0 | ¢Cccv6'0 | 688¥P6°0 | ISFFP6'0 | €977E6°0 | 686CE6°0 S

A9 desd AQ[NPd puo ,puo 39q mm@n_ €S 2 SO 18D or)s owrely | sivlisnp)

93

punuezAg 10y senyund a8eIoAy (OTF 9[qr],

¢S€066°0 | 950€66°0 | ¥0L666°0 T | 9¢PrL6°0 | 70L096°0 | SRTIR6G'0 | ST8ES6°0 | 96¢LL6°0 | LESTS6'0 | FIPSL6'0 8¢
I8¥.86°0 | L06686°0 | L99866°0 T | L60€L6°0 | #PPLG6°0 | 6T96L6°0 | ¥LGCS6°0 L8GL6°0 | GTEER6'0 | 879CL6°0 (43
9cT¥86°0 | €€€986°0 | 68€866°0 | 99596660 | 9S0TL6°0 | L99GS6°0 | #¥6LL6°0 | STE6L6°0 | €€E7.L6°0 28086°0 9696°0 9¢
¥0CIS6°0 | ¥#6C86°0 | T8¥966°0 | L99866°0 | 871696°0 | €6GE€S6°0 | STRGL6°0 | ¥¥PSL6'0 | ¥0L696°0 €16L6°0 | 1T7L996°0 61
CG8LL6°0 | TS68L6°0 | 615G¢66°0 | L99866°0 | ST8E96°0 | 8VIES6'0 | 9G0TL6°0 | 6887L6°0 | 966C96°0 | 6S9L¥VL6°0 | 9¢7S96°0 18
EIVT1L6°0 | ¥PPCL6°0 | 9¢V086°0 €T1986°0 | ¢¢c696°0 €96°0 | G8T8G6°0 | PLSET96°0 | 8LLYS6°0 | ST8S896°0 L£€96°0 9
96¢596°0 | 962596°0 | €659596°0 | STECI6°0 | 8VIES6'0 £€66°0 | 7PPES6°0 | STEVS6°0 €96°0 | 995796°0 | ¥0L096°0 €

A9 ded AQ[NPd puo ,pud 89q mwm.o_ €380 2SO 18D yor)s owrelj | SI9ISN[))

94

4.8 Conclusion

{Todo #4.12: Why did these methods work best?}

Ixor was run on two non-trivial distributed applications running across

four virtual machines.

95

‘Surdures oanrpdepe i pajosjep seanrey Jjo oagejusdiod ageroar A[ng 11 9[RT,

6T98°66 | €96L°66 | 9¢6E°08 | L£GG'99 | LITV'66 | 65CC 86 CIL°0L | 96L1°9L | €6€L°68 | 9969°€8 | ISV6TL | (%08) 06
6TG8'66 | LEGT'66 | PLOT' AL | 8LLL'E9 | 8LLV'S6 | €976 L6 GZ'99 | L06£TL | TTTI'88 | LOF608 | FLSF 1L | (%ST) L
8790°66 | L918°86 | 9GST°EL | LO6T'09 | 61SEL6 | FFFOT6 | 962219 | $#0L9°L9 | G89Z°G8 | 8LLELL | L06Z°L9 | (%02) 09
LEGE'86 | G8I8°96 | SIES'69 | 6SL8°LS | SP9T°96 | 610726 | 2SE6°9S | 688£°29 | 6586°08 | 8S86°0L | TTT6%9 | (%ST) G
8.C6°96 GeV6 | ¥OCV'€9 | €SE9' VS | L998°C6 798 1°2S | 8LL0°LG | 92¥S LL | ¥96£29 | 68¢6°6S | (%01) 0€
LECT'E6 | 6T07°06 | 9¢VI'LS | 688T'CS | 960888 | LOV¥'CL | ¥IVE 67 1°¢S | L07L°0L LEE6Y | CS8K]'TS (%S) s1
TTT9°98 | PPRT'C8 | €ESTTS | 68€T°0S | L06F°9L | 61SL°ES | 96T LY | $OL6°6F | TT9T'8S | £€86°9¢ | #962°9¢ | (%ST) 8
CIL°9V | CCL6'9V | TSBE'|Y 66 | 69LL°0F | 9¢P8'ST | #L0C6C | 8LLO'EE LE6°TE | €9VRTI | PLGV'ET (%1) ¢
A9[de3 | A9[j1po puo ,puo 89q mw@o_ €380 ZSD 18D yor)s ourely SI199SN[))

96

‘Surdures aanpdepe yim pajoslep seanre] Jo asejusdiod afeIoar auyuRZAg 71 9[R],
CGEC'LS | ¥L99°06 | ¢€CT9'66 00T | PFPLSS | SPIL'9E | L0¥S'89 | TITT'EL | £€969°C9 | 2S€T 1L | 2oeh8s | (%0€) 8¢
686C IS | 6196'48 | ¥0TS'S6 00T | 9¢¥8' 7S | L99L°0€ LEVF9 | 926L°69 | L9T19°LG | 8L29°89 | 8FIL'TS | (%ST) ¢€
G898 T, | 9G0T'8L | 99G6°L6 | SLTS'66 | 688867 | 9906°GC L8E°6S | 9¥6°€9 | FFPIES | TITLF9 | €970 %% | (%02) 92
LOV8'G9 | SVICTIL | I8FI'¥6 | G89C'86 | CCC6'EV L8T'LT | 688€°GG | L£09°'6S | ¥¥69°€V | 9509°6S GL'8¢ | (%S1) 61
8790'8G | ¥LOV'T9 G998 | 9¢VL L6 | CSSL'SE | VIV VI L8E°EY | 92F0°0S | 95G8°LT | G898°6¥ | 8¥9¢Te | (%01) €1
6889°9% | TTIG'SY | LO6S'T9 | SVIV'CL | 96¢6°¢C | ¥0LS6'S | ¥OCC LT | LO6V'SC | 8VIS0°6 1°9€ | 688T1°LC (%9) 9
L€0€°0€ | 9906°CE | CcolT'€E | TTT1S0€ LEGT'6 | 6GCPS'S | LE0CR'L | 9697’8 | TSRV | 9CVC LT L8€18 | (%52 €
A9[ded | Ao[j1po pue ,pud 8aq mwwﬁ €380 2SO 18D yoels ourey sI199sN[))

Chapter 5

CONCLUSION

5.1 Conclusion

I have presented a method of collecting and analyzing stack traces from virtual
machines in a distributed Java system. Novel ways of comparing executions
were applied to a non-trivial sample application and the effectiveness of various
strategies and clustering algorithms showed that this approach can distinguish

between normal and failed executions.

5.2 Future directions

With some modifications, this approach may be applicable to single-machine

systems, as well.

5.3 Issues with current work

Since Ixor operates under the assumption that the network is unreliable, the
best practice for setting up Ixor is to put two network cards in each machine:

one going to the Ixor server and another going to the world.

97

98

There is no security built into Ixor at all. Also, for reasons specified in B,
it is not cross-platform.

Ixor must compare identical versions of the software: no line numbers can
change.

Unlike call profiling, we can’t get use the descriptive/discriminating fea-
tures which caused the program to be clustered like that. In other words, we

have fewer leads.

Appendix A

XDPROF PERFORMANCE
TESTING

We used an Intel Pentium IT 350 MHz with 512 MB of RAM running Windows
2000 Professional for our testing. The web pages were served off of a machine
running FreeBSD and the Apache web server. The low geometric mean in
Table [A1G is the SPECjvm98_base score; the high geometric mean is the
SPECjvm98 score. We used the timethis utility[34] against a special build of
xdProf for Table AT7 and [ATS.

99

100

VLI V1 sojepdn puoddsI[[I ()T ‘©IOWDI JOIJPX YA
981 8°0¢ sojepdn PuodssI[[IT (T ‘UIIRU (0] ‘JOIJPX I
€81 0'C% JOIJPX YOI
oseq 86WAIDHJS | 86WAlDHJS

TNA YOI 10dGI0T I €T JUSTIUOIATG SUWIUNY g BAR[UNG 10f SHNSOT EWAIDHJS ‘£T'V O1qBL

101

Table A.14: Elapsed time on Sun 1.3 HotSpot Client VM (without xdProf =

383.136 seconds).

Refresh Local time Local Remote Remote
(millisec- (seconds) overhead time overhead
onds) (seconds)
100 412.863 7.76% 395.258 3.16%
200 402.338 5.01% 390.531 1.93%
1000 398.202 3.93% 392.143 2.35%

Table A.15: Elapsed time on Sun 1.3 Classic VM (without xdProf = 3600.477

seconds).
Refresh Local time Local Remote Remote
(millisec- (seconds) overhead time overhead
onds) (seconds)
100 4352.799 20.90% 3680.101 2.21%
200 4263.951 18.43% 3639.373 1.08%
1000 4207.349 16.86% 3601.698 0.03%

102

Table A.16: SPEC ratios for Sun 1.3 HotSpot Client VM.

without with xdProf with xdProf
xdProf local machine remote
100 millisec- machine
onds 100 millisec-
onds
Benchmark Low High Low | High Low High
227 mtrt 22.10 | 25.30 21.80 | 24.20 21.10 | 25.10
_202_jess 22.40 | 31.30 23.50 | 29.10 17.90 | 30.90
_201_compress 11.80 | 13.40 12.70 | 12.80 9.36 | 12.90
_209_db 12.90 | 13.80 12.60 | 13.10 13.20 | 13.20
_222 mpegaudio 32.80 | 35.40 32.00 | 33.70 32.70 | 34.50
_228_jack 30.40 | 38.40 30.50 | 36.60 30.60 | 36.60
_213_javac 9.15 | 12.40 9.62 | 11.60 10.10 | 12.30
| Geometric Mean || 1830 | 22.00 [18.60 | 20.80 || 17.40 | 21.40 |

103

G16°¢10T 619°948¢ Gg9c0T1T 98¢ %SE'C EVIc6E 000T 9jomal
76€°80¢ €C0'748¢ 6EV8VES VLST %E6'T 1€5°06€ 002 9jomal
6€6°G0T L8C EV8C G0€E8090T TELE %I91°€ 84T 96€ 00T djomal
617'8T0T GL9°9.8¢ 08L7CIT 16€ %€6°€ ¢0T'86€ 000T [®20]
064°80¢ 07¢'848C 8¢8L045¢ 2261 %10°¢ 8€ECOV 00¢ [®20]
696°90T GSEV88C 66GEETTT 098¢ %9L°L €98°cIy 00T [®20]
(spuo
saoed], sooed], -09s) (sux)
ouwily, S014¢g [BI0L $914¢ [BIOL | seoed], [peeyieaQ ouul T, Usoajoy | I9AI0S

"(Spuodes 9gT°g8¢ = JOIJPX MOYHM) INA Juel[) 30dGI0[€T Ung 10§ S[rejop dlfed) J10M3oN LTV oYL

104

€29°900T L8E'8IEY G600€98 T 8LG€ %€0°0 869°109¢€ 000T 9jomal
772 90¢ 7L 6€€Y 9L06.L59.L 9V9.LT %80°T €LE°6€9¢€ 00g djomal
657 70T 8€9°GEEY 9€STPLCST | 0€2S€E %1C'C 10T°089€ 00T djomdl
066°,00T 80€'99EY 0ECERTRT (2284 %9891 6v¢ L0V 000T [®20]
€€9°20¢ VS6°LVEY 98468¢68 9€40¢ %EV 81 166°€9¢V 00¢ [®20]
€€¢°901 LYLLVEY GO9VVI8LT | ¥L60V %06°0¢ 66L°CSEY 00T [®20]
(spuo
saoed], sooed], -09s) (sux)
QWIL], $914Ag [e10], $914d [e)0], | seoed], [peoyieaQ ouul T, Usoajoy | I9AI0S
(Spuo9s LLF'009€ = JOIJPX INOYIM) [NA DISSR[) €T UNS I0] S[[e}dp dLJel) SIOMION 8TV d[qRL

Bibliography

1]

D. Abramson and R. Sosic. A debugging and testing tool for supporting
software evolution. Automated Software Engineering: An International

Journal, 3(3/4):369-390, August 1996.

Ron Baecker, Chris DiGiano, and Aaron Marcus. Software visualization

for debugging. Communications of the ACM, 40(4):44-54, 1997.

Albert Benveniste, Eric Fabre, and Stefan Haar. Markov nets: Probabilis-
tic models for distributed and concurrent systems. Technical Report 1415,

Institut de Recherche en Informatique et Systemes Alétoires, September

2001.

Stephanie Bodoff, Dale Green, Kim Haase, Eric Jendrock, Monica
Pawlan, and Beth Stearns. The J2EE Tutorial. Sun Microsystems, 2002.

Stephen P. Borgatti. How to explain hierarchical clustering. Web, 1994.

http://www.analytictech.com/networks/hiclus.htm.

Christian Charras and Thierry Lecroq. Sequence comparison.
http://www-igm.univ-mlv.fr/~lecroq/seqcomp, February 1998. LIR
(Laboratoire d’Informatique de Rouen) et ABISS (Atelier Biologie Infor-

matique Statistique Socio-linguistique).

105

http://www.analytictech.com/networks/hiclus.htm
http://www-igm.univ-mlv.fr/~lecroq/seqcomp

[7]

[10]

[11]

[12]

106

Wing Hong Cheung, James P. Black, and Eric Manning. A framework
for distributed debugging. IEEE Software, 7(1):106-115, January 1990.

Max Copperman. Producing an accurate call-stack trace in the occasional
absence of frame pointers. Technical Report UCSC-CRL-92-25, UCSC,
1992.

Max Copperman. Debugging optimized code without being misled. ACM
Transactions on Programming Languages and Systems, 16(3):387-427,
May 1994.

George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Sys-
tems — Concepts and Design. Addison-Wesley, 2001.

T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson, and M. Wol-
czk. Compiling Java just in time. [EEE Micro, 17:36-43, May — June
1997.

Timothy Cramer, Richard Friedman, Terrence Miller, David Seberger,
Robert Wilson, and Mario Wolczko. Compiling java just in time. [FEE
Micro, 17:36-43, May — June 1997.

William Dickinson, David Leon, and Andy Podgurski. Pursuing failure:
the distribution of program failures in a profile space. In Proceedings of the
S8th FEuropean software engineering conference held jointly with 9th ACM
SIGSOFT symposium on Foundations of software engineering, pages 246—
255. ACM Press, 2001.

H. Garcia-Molina. Elections in a distributed computing system. [EFEE
Transactions on Computers, C-31(1):49-59, January 1982.

Osamu Gotoh. An improved algorithm for matching biological sequences.

Journal of Molecular Biology, 162:705-708, 1982.

[16]

[17]

[18]

[20]

[21]

[22]

[23]

[24]

[25]

107

D. Griswold. The Java HotSpot Virtual Machine Architecture, 1998.

http://java.sun.com/products/hotspot/whitepaper.htmll.
jBoss. jBoss. http://www. jBoss.org/.

Dean F. Jerding, John T. Stasko, and Thomas Ball. Visualizing message
patterns in object-oriented program executions. Technical Report 96-15,

Georgia Institute of Technology, May 1996.

George Karypis. CLUTO: CLUstering TOolkit.
http://www-users.cs.umn.edu/~karypis/cluto/|, April 2002. Version

2.0. University of Minnesota, Department of Computer Science.

[. H. Kazi, D. P. Jose, B. Ben-Hamida, C. J. Hescott, C. Kwok, J. A.
Konstan, D. J. Lilja, and P.-C. Yew. JaViz: A client/server Java profiling
tool. IBM Systems Journal, 39(1):96-117, 2000.

John Lambert and Andy Podgurski. xdProf: A tool for the capture and
analysis of stack traces in a distributed Java system. In Proceedings of

the 2001 SPIE Conference, 2001.

L. Lamport. LaTeX: A Document Preparation System. Addison-Wesley,
Reading, 1994.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed

system. Communication of the ACM, 21(7):558-565, July 1978.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine
generals problem. ACM Transactions on Programming Languages and

Systems (TOPLAS), 4(3):382-401, 1982.

David Leon, Andy Podgurski, and Lee J. White. Multivariate visualiza-
tion in observation-based testing. In Proceedings of the 22nd international

conference on Software engineering, pages 116-125. ACM Press, 2000.

http://java.sun.com/products/hotspot/whitepaper.html
http://www.jBoss.org/
http://www-users.cs.umn.edu/~karypis/cluto/

[20]

[27]

[28]

[29]

[31]

[32]

33]

108

I. Levenshtein. Binary codes capable of correcting deletions, insertions

and reversals. Soviet Physics-Doklady, 6:707-710, 1966.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, Reading, MA, 1997.

S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R. Gansner.
Using automatic clustering to produce high-level system organizations of
source code. In IEEE Proceedings of the 1998 Int. Workshop on Program
Understanding (IWPC’98), 1998.

D. Manivannan, Robert H. B. Netzer, and Mukesh Singhal. Finding
consistent global checkpoints in a distributed computation. IEEE Trans-

actions on Parallel and Distributed Systems, 8(6):623-627, 1997.

Masoud Mansouri-Samani and Morris Sloman. Monitoring distributed
systems (a survey). Technical Report DOC92/23, Imperial College,
September 1992.

Friedemann Mattern. Virtual time and global states of distributed sys-
tems. In M. Cosnard et. al., editor, Parallel and Distributed Algorithms:
proceedings of the International Workshop on Parallel € Distributed Al-
gorithms, pages 215-226. Elsevier Science Publishers B. V., 1989.

David Melski and Thomas W. Reps. Interprocedural path profiling. In
Computational Complexity, pages 47-62, 1999.

Nabor C. Mendonca and Jeff Kramer. Component module classification

for distributed software understanding.

Microsoft Corporation. Microsoft Windows 2000 Professional Resource

Kit. Microsoft Press, 2000.

[35]

[36]

[39]

[42]

[43]

[44]

109

Sun Microsystems. Java remote method invocation. http://java.sun.
com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html, Oc-
tober 1998. Revision 1.50, JDK 1.2.

Stephen C. North and Eleftherios Koutsofios. Application of graph visu-
alization. In Proceedings of Graphics Interface '94, pages 235-245, Banff,
Alberta, Canada, 1994.

Numega. TrueTime and TrueCoverage.

B. J. Oommen, K. Zhang, and W. Lee. Numerical similarity and dissim-
ilarity measures between two trees. IEEFE Transactions on Computers,

45(12):1426-1434, December 1996.

B. John Oommen and R. K. S. Loke. Noisy subsequence recognition us-
ing constrained string editing involving substitutions, insertions, deletions

and generalized transpositions. In ICSC| pages 116-123, 1995.
Open Source Initiative. The BSD License.

Andy Podgurski, Wassim Masri, Yolanda McCleese, Francis G. Wolff, and
Charles Yang. Estimation of software reliability by stratified sampling.
ACM Transactions on Software Engineering and Methodology, 8(3):263—
283, July 1999.

Andy Podgurski and Charles Yang. Partition testing, stratified sampling,
and cluster analysis. In Proceedings of the first ACM symposium on Foun-

dations of software engineering, pages 169-181. ACM Press, 1993.
PreEmptive Solutions. DashOPro.

R. Schwarz and F. Mattern. Detecting causal relationships in distributed
computations: In search of the holy grail. Lisboa 92 - An Advanced Course
on Distributed Systems, 1992.

http://java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html

[45]
[46]

[47]

[48]

[49]

[50]

[54]

110

Sitraka Software. JProbe. http://www.klgroup.com.
@stake Research Labs. netcat 1.1 for Win 95/98/NT/2000.

Standard Performance Evaluation Corporation. SPECjvm98, 1998. http:

//www.spec.org/osg/jvm98/.

John T. Stasko and Eileen Kraemer. A methodology for building
application-specific visualizations of parallel programs. Journal of Parallel

and Distributed Computing, 18(2):258-264, 1993.

John Steven, Pravir Chandra, Bob Fleck, and Andy Podgurski. jrapture:
A capture/replay tool for observation-based testing. In Proceedings of the
International Symposium on Software Testing and Analysis, pages 158—

167. ACM Press, 2000.

Scott D. Stoller. Leader election in distributed systems with crash failures.
Technical Report 481, Computer Science Dept., Indiana University, May
1997. Revised July 1997.

Sreenivas Subhash. Independent global snapshots in large distributed
systems, 1997. 4th International Conference on High Performance Com-

puting December 18-21, 1997 - Bangalore, India.
Sun Microsystems. Forte for Java http://www.sun.com/forte/ffj.

Sun Microsystems. Java Virtual Machine Profiler Interface Documen-
tation. http://java.sun.com/j2se/1.3/docs/guide/jvmpi/ jvmpi.

htmll.

C. Tice and S. Graham. Key instructions: Solving the code location
problem for optimized code. Technical Report 164, Compaq Systems
Research Center, September 2000.

http://www.klgroup.com
http://www.spec.org/osg/jvm98/
http://www.spec.org/osg/jvm98/
http://www.sun.com/forte/ffj
http://java.sun.com/j2se/1.3/docs/guide/jvmpi/jvmpi.html
http://java.sun.com/j2se/1.3/docs/guide/jvmpi/jvmpi.html

[55]

[56]

[57]

[58]

[60]

[61]

[62]

111

Giovanni Vigna. Protecting mobile agents through tracing. In 3rd ECOOP
Workshop on Mobile Object Systems, Jyvaskyla, Finland, 1997.

D. Viswanathan and S. Liang. Java Virtual Machine Profiler Interface.

IBM Systems Journal, 39(1):82-95, 2000.
VMGEAR. Optimizeit.

Robert J. Walker, Gail C. Murphy, Bjorn Freeman-Benson, Darin Wright,
Darin Swanson, and Jeremy Isaak. Visualizing dynamic software system
information through high-level models. In Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
pages 271-283, Vancouver, British Columbia, Canada, 1822 October
1998. ACM Press. Published as ACM SIGPLAN Notices 33(10), Octo-
ber1998.

Robert J. Walker, Gail C. Murphy, Jeffrey Steinbok, and Martin P. Robil-
lard. Efficient mapping of software system traces to architectural views.
Technical Report TR-00-09, Department of Computer Science, University
of British Columbia, 201-2366 Main Mall, Vancouver, British Columbia,
Canada V6T 174, 7 July 2000.

Hendra Widjaja and Michael Oudshoorn. Visualisation of concurrent and

object-oriented programs.

Wim De Pauw, Richard Helm, Doug Kimelman, and John Vlissides. Vi-
sualizing the Behavior of Object-Oriented Systems. In Proceedings of
the OOPSLA ’93 Conference on Object-oriented Programming Systems,

Languages and Applications, pages 326-337, 1993.

I. Yu. Integrating event visualization with sequential debugging. Master’s

thesis, University of Waterloo, 1996.

112

[63] Ying Zhao and George Karypis. Criterion functions for document clus-
tering: Experiments and analysis. Technical Report 01-40, University
of Minnesota, Department of Computer Science / Army HPC Research
Center, February 2002.

	1 INTRODUCTION
	1.1 Overview of thesis
	1.1.1 Challenges
	1.1.2 Previous solutions
	1.1.2.1 Application-level logging
	1.1.2.2 Runtime instrumentation
	T1.0 TODO: more reasons
	1.1.2.3 Controlled environments
	1.1.2.4 Custom platforms

	1.1.3 This work

	1.2 Problem definition
	1.2.1 Distributed system
	1.2.2 Communication mechanisms
	1.2.2.1 Sockets
	1.2.2.2 Remote Procedure Calls
	1.2.2.3 Objects

	1.2.3 Our problem
	1.2.4 Generalizability

	1.3 Observation-based testing
	T1.1 TODO: Re-write this about observation-based testing.

	1.4 xdProf
	1.4.1 Overview of xdProf
	1.4.2 xdProf client
	1.4.2.1 Java Virtual Machine Profiling Interface
	1.4.2.2 Communication Thread
	1.4.2.3 xdProf Data Format
	1.4.2.4 Performance

	1.4.3 xdProf server
	1.4.3.1 Interfaces
	1.4.3.2 Analysis Tools

	1.5 Related work
	1.5.1 Debugging
	1.5.2 Visualization
	1.5.3 Java-related
	1.5.4 Software engineering
	1.5.5 Sequences, patterns, and trees
	1.5.6 Distributed systems

	1.6 Trademarks
	1.7 Organization
	2 SOFTWARE DESIGN
	2.1 Ixor Client
	2.1.1 Invocation
	2.1.2 Java Virtual Machine Profiling Interface
	2.1.3 Communication thread
	2.1.3.1 Details of algorithm
	2.1.3.2 Dropping packets
	2.1.3.3 UDP Port selection

	2.1.4 Implications of approach
	2.1.4.1 Synchronization
	2.1.4.2 Virtual machine choice
	2.1.4.3 Class file information
	2.1.4.4 Class loading considerations

	2.1.5 Ixor Data Format

	2.2 Ixor Server
	2.2.1 Algorithm
	2.2.2 Output

	2.3 Roxi Analysis Tool
	2.4 Differences with xdProf

	3 ALGORITHMS FOR ANALYSIS
	3.1 Definitions
	3.2 Comparing executions
	3.2.1 Comparing all executions cleverly
	3.2.2 Intuition for multiplying call stacks by occurrences
	3.2.3 Intuition for Compare(a, b) + Compare(b, a)

	3.3 Comparing call stacks
	3.4 Edit distance
	3.4.1 Levenshtein
	3.4.2 Location sensitive-strategies
	3.4.2.1 Favor end
	T3.2 TODO: Generate this.
	T3.3 TODO: Generate this.
	3.4.2.2 Favor beginning strategy
	T3.4 TODO: Explanation

	3.4.3 Call stack-sensitive strategies
	3.4.3.1 Call stack strategy 1
	3.4.3.2 Call stack strategy 2
	3.4.3.3 Call stack strategy 3

	3.5 Gap distance
	3.5.1 Distance strategies

	3.6 Call stack and stack frame counting
	3.7 Cluster analysis
	3.7.1 Parameters
	3.7.1.1 Number of clusters
	3.7.1.2 Clustering method
	3.7.1.3 Clustering criterion function

	T3.5 TODO: Why these?
	3.7.1.4 Scaling each row
	3.7.1.5 Similarity

	4 CASE STUDY
	4.1 Possibilities
	4.1.1 ECPerf
	4.1.2 jBoss
	4.1.3 Jini Technology Core Platform Compatibility Kit
	4.1.4 Applications selected

	4.2 Bully application
	4.2.1 Architecture
	4.2.2 Execution flow
	4.2.2.1 Starting up
	T4.6 TODO: Architecture picture

	4.2.2.2 Election details
	T4.7 TODO: Election algorithm
	T4.8 TODO: Sequence diagram
	T4.9 TODO: Sequence diagram
	4.2.3 Specification

	4.3 Byzantine application
	4.3.1 Description of problem
	4.3.2 Algorithm
	4.3.3 Implementation

	4.4 Fault injection
	4.4.1 Failure-inducing behaviors
	4.4.2 Injection

	4.5 Application-level issues
	4.5.1 Bully -- priority elevation
	4.5.2 Byzantine -- unloyal generals
	4.5.3 Faults injected
	T4.10 TODO: Explain results
	T4.11 TODO: Byzantine failures

	4.6 Evaluating the approach
	4.6.1 Sampling methods
	4.6.1.1 Random sampling
	4.6.1.2 1-per cluster sampling
	4.6.1.3 n-per cluster sampling
	4.6.1.4 Small-cluster sampling
	4.6.1.5 Adaptive sampling

	4.7 Results
	4.7.1 Distribution of failures
	4.7.2 Singletons
	4.7.3 Purity
	4.7.4 Average percentage of failures

	4.8 Conclusion
	T4.12 TODO: Why did these methods work best?

	5 CONCLUSION
	5.1 Conclusion
	5.2 Future directions
	5.3 Issues with current work

	A XDPROF PERFORMANCE TESTING

